Package: brtobit 0.1-2

brtobit: Bias-Reduced Tobit Regression

Tobit models are regression models with a Gaussian response variable left-censored at zero, constant latent variance, and a latent mean that depends on covariates through a linear predictor. As an alternative to plain maximum likelihood estimation, the adjusted score equations of Kosmidis and Firth (2010) <doi:10.1214/10-ejs579> are utilized to obtain bias-reduced estimates of the model parameters.

Authors:Achim Zeileis [aut, cre], Ioannis Kosmidis [aut], Susanne Koell [aut], Christian Kleiber [ctb]

brtobit_0.1-2.tar.gz
brtobit_0.1-2.zip(r-4.5)brtobit_0.1-2.zip(r-4.4)brtobit_0.1-2.zip(r-4.3)
brtobit_0.1-2.tgz(r-4.4-any)brtobit_0.1-2.tgz(r-4.3-any)
brtobit_0.1-2.tar.gz(r-4.5-noble)brtobit_0.1-2.tar.gz(r-4.4-noble)
brtobit_0.1-2.tgz(r-4.4-emscripten)brtobit_0.1-2.tgz(r-4.3-emscripten)
brtobit.pdf |brtobit.html
brtobit/json (API)

# Install 'brtobit' in R:
install.packages('brtobit', repos = c('https://zeileis.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://r-forge.r-project.org/projects/topmodels

On CRAN:

3.24 score 3 exports 19 dependencies

Last updated 1 months agofrom:81645b17c5. Checks:OK: 7. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winOKNov 20 2024
R-4.5-linuxOKNov 20 2024
R-4.4-winOKNov 20 2024
R-4.4-macOKNov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:brtobitbrtobit_controlbrtobit_fit

Dependencies:crchevaluateFormulahighrknitrlatticeMASSMatrixnlmenumDerivordinalRcppRcppArmadillosandwichscoringRulesucminfxfunyamlzoo

Readme and manuals

Help Manual

Help pageTopics
Bias-Reduced Tobit Regressionbread.brtobit brtobit brtobit_control brtobit_fit coef.brtobit fitted.brtobit getSummary.brtobit logLik.brtobit model.frame.brtobit model.matrix.brtobit predict.brtobit print.brtobit print.summary.brtobit prodist.brtobit summary.brtobit vcov.brtobit