
Package: topmodels (via r-universe)
September 16, 2024

Title Infrastructure for Forecasting and Assessment of Probabilistic
Models

Version 0.3-0

Date 2024-08-06

Depends R (>= 3.6.0)

Imports graphics, grDevices, grid, stats, utils, colorspace,
distributions3 (>= 0.2.1), ggplot2

Suggests bamlss (>= 1.2-1), countreg, crch (>= 1.1-1), digest, gamlss
(>= 5.4-20), gamlss.dist (>= 6.1-1), MASS, PoissonBinomial,
qqconf, scoringRules, tibble, tinytest

Description Unified infrastructure for probabilistic models and
distributional regressions: Probabilistic forecasting of
in-sample and out-of-sample of probabilities, densities,
quantiles, and moments. Probabilistic residuals and scoring via
log-score (or log-likelihood), (continuous) ranked probability
score, etc. Diagnostic graphics like rootograms, PIT
histograms, (randomized) quantile residual Q-Q plots, and
reliagrams (reliability diagrams).

License GPL-2 | GPL-3

Encoding UTF-8

URL https://topmodels.R-Forge.R-project.org/topmodels/

Additional_repositories https://zeileis.R-universe.dev

RoxygenNote 7.3.2

Repository https://zeileis.r-universe.dev

RemoteUrl https://github.com/r-forge/topmodels

RemoteRef HEAD

RemoteSha 06b70d6fea89fc0d7f1e153e7fe9a5f80cca0aee

1

https://topmodels.R-Forge.R-project.org/topmodels/
https://zeileis.R-universe.dev

2 crps.distribution

Contents
crps.distribution . 2
Empirical . 6
geom_qqrplot . 10
newresponse . 15
pithist . 17
plot.pithist . 20
plot.qqrplot . 25
plot.reliagram . 29
plot.rootogram . 32
procast . 37
promodel . 41
proresiduals . 42
proscore . 45
qqrplot . 48
reliagram . 51
rootogram . 53
SerumPotassium . 57
stat_pithist . 58
stat_rootogram . 63
topmodels . 68
VolcanoHeights . 70
wormplot . 71

Index 74

crps.distribution Method for Numerically Evaluating the CRPS of Probability Distribu-
tions

Description

Method to the crps generic function from the scoringRules package for numerically evaluating the
(continuous) ranked probability score (CRPS) of any probability distributions3 object.

Usage

crps.distribution(
y,
x,
drop = TRUE,
elementwise = NULL,
gridsize = 500L,
batchsize = 10000L,
applyfun = NULL,
cores = NULL,
method = NULL,

crps.distribution 3

...
)

crps.Beta(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Bernoulli(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Binomial(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Erlang(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Exponential(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Gamma(y, x, drop = TRUE, elementwise = NULL, ...)

crps.GEV(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Geometric(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Gumbel(y, x, drop = TRUE, elementwise = NULL, ...)

crps.HyperGeometric(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Logistic(y, x, drop = TRUE, elementwise = NULL, ...)

crps.LogNormal(y, x, drop = TRUE, elementwise = NULL, ...)

crps.NegativeBinomial(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Normal(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Poisson(y, x, drop = TRUE, elementwise = NULL, ...)

crps.StudentsT(y, x, drop = TRUE, elementwise = NULL, ...)

crps.Uniform(y, x, drop = TRUE, elementwise = NULL, ...)

crps.XBetaX(y, x, drop = TRUE, elementwise = NULL, method = "cdf", ...)

crps.GAMLSS(y, x, drop = TRUE, elementwise = NULL, ...)

crps.BAMLSS(y, x, drop = TRUE, elementwise = NULL, ...)

Arguments

y A distribution object, e.g., as created by Normal or Binomial.

x A vector of elements whose CRPS should be determined given the distribution
y.

4 crps.distribution

drop logical. Should the result be simplified to a vector if possible?

elementwise logical. Should each distribution in y be evaluated at all elements of x (elementwise
= FALSE, yielding a matrix)? Or, if y and x have the same length, should the
evaluation be done element by element (elementwise = TRUE, yielding a vec-
tor)? The default of NULL means that elementwise = TRUE is used if the lengths
match and otherwise elementwise = FALSE is used.

gridsize positive size of the grid used to approximate the CDF for the numerical calcula-
tion of the CRPS.

batchsize maximum batch size. Used to split the input into batches. Lower values reduce
required memory but may increase computation time.

applyfun an optional lapply-style function with arguments function(X, FUN, ...). It
is used to compute the CRPS for each element of y. The default is to use the
basic lapply function unless the cores argument is specified (see below).

cores numeric. If set to an integer the applyfun is set to mclapply with the desired
number of cores, except on Windows where parLapply with makeCluster(cores)
is used.

method character. Should the grid be set up on the observation scale and method = "cdf"
be used to compute the corresponding probabilities? Or should the grid be set
up on the probability scale and method = "quantile" be used to compute the
corresponding observations? By default, "cdf" is used for discrete observations
whose range is smaller than the gridsize and "quantile" otherwise.

... currently not used.

Details

The (continuous) ranked probability score (CRPS) for (univariate) probability distributions can be
computed based on the the object-oriented infrastructure provided by the distributions3 package.
The general crps.distribution method does so by using numeric integration based on the cdf
and/or quantile methods (for more details see below). Additionally, if dedicated closed-form
CRPS computations are provided by the scoringRules package for the specified distribution, then
these are used because they are both computationally faster and numerically more precise. For
example, the crps method for Normal objects leverages crps_norm rather than relying on numeric
integration.

The general method for any distribution object uses the following strategy for numerical CRPS
computation. By default (if the method argument is NULL), it distinguishes distributions whose entire
support is continuous, or whose entire support is discrete, or mixed discrete-continuous distribution
using is_continuous and is_discrete, respectively.

For continuous and mixed distributions, an equidistant grid of gridsize + 5 probabilities is drawn
for which the corresponding quantiles for each distribution y are calculated (including the ob-
servation x). The calculation of the CRPS then uses a trapezoidal approximation for the numeric
integration. For discrete distributions, gridsize equidistant quantiles (in steps of 1) are drawn and
the corresponding probabilities from the cdf are calculated for each distribution y (including the
observation x) and the CRPS calculated using numeric integration. If the gridsize in steps of 1 is
not sufficient to cover the required range, the method falls back to the procedure used for continuous
and mixed distributions to approximate the CRPS.

crps.distribution 5

If the method argument is set to either "cdf" or "quantile", then the specific strategy for setting
up the grid of observations and corresponding probabilities can be enforced. This can be useful if
for a certain distribution class, only a cdf or only a quantile method is available or only one of
them is numerically stable or computationally efficient etc.

The numeric approximation requires to set up a matrix of dimension length(y) * (gridsize +
5) (or length(y) * (gridsize + 1)) which may be very memory intensive if length(y) and/or
gridsize are large. Thus, the data is split batches of (approximately) equal size, not larger than
batchsize. Thus, the memory requirement is reduced to batchsize * (gridsize + 5) in each
step. Hence, a smaller value of batchsize will reduce memory footprint but will slightly increase
computation time.

The error (deviation between numerical approximation and analytic solution) has been shown to be
in the order of 1e-2 for a series of distributions tested. Accuracy can be increased by increasing
gridsize and will be lower for a smaller gridsize.

For parallelization of the numeric computations, a suitable applyfun can be provided that carries
out the integration for each element of y. To facilitate setting up a suitable applyfun using the
basic parallel package, the argument cores is provided for convenience. When used, y is split into
B equidistant batches; at least B = cores batches or a multiple of cores with a maximum size of
batchsize. On systems running Windows parlapply is used, else mclapply.

Value

In case of a single distribution object, either a numeric vector of length(x) (if drop = TRUE, default)
or a matrix with length(x) columns (if drop = FALSE). In case of a vectorized distribution object,
a matrix with length(x) columns containing all possible combinations.

Examples

set.seed(6020)

three normal distributions X and observations x
library("distributions3")
X <- Normal(mu = c(0, 1, 2), sigma = c(2, 1, 1))
x <- c(0, 0, 1)

evaluate crps
using infrastructure from scoringRules (based on closed-form analytic equations)
library("scoringRules")
crps(X, x)

using general distribution method explicitly (based on numeric integration)
crps.distribution(X, x)

analogously for Poisson distribution
Y <- Poisson(c(0.5, 1, 2))
crps(Y, x)
crps.distribution(Y, x)

6 Empirical

Empirical Create an Empirical Distribution

Description

An empirical distribution consists of a series of N observations out of a typically unknown distribu-
tion, i.e., a random sample ’X’.

Draws n random values from the empirical ensemble with replacement.

Please see the documentation of [Empirical()] for some properties of the empircal ensemble distri-
bution, as well as extensive examples showing to how calculate p-values and confidence intervals.

Please see the documentation of [Empirical()] for some properties of the Empirical distribution, as
well as extensive examples showing to how calculate p-values and confidence intervals. ‘quantile()‘

TODO(RETO): Check description

Usage

Empirical(x)

pempirical(q, y, lower.tail = TRUE, log.p = FALSE, na.rm = TRUE)

dempirical(x, y, log = FALSE, method = "hist", ...)

qempirical(p, y, lower.tail = TRUE, log.p = FALSE, na.rm = TRUE, ...)

rempirical(n, y, na.rm = TRUE)

S3 method for class 'Empirical'
mean(x, ...)

S3 method for class 'Empirical'
variance(x, ...)

S3 method for class 'Empirical'
skewness(x, type = 1L, ...)

S3 method for class 'Empirical'
kurtosis(x, type = 3L, ...)

S3 method for class 'Empirical'
random(x, n = 1L, drop = TRUE, ...)

S3 method for class 'Empirical'
pdf(d, x, drop = TRUE, elementwise = NULL, ...)

S3 method for class 'Empirical'

Empirical 7

log_pdf(d, x, drop = TRUE, elementwise = NULL, ...)

S3 method for class 'Empirical'
cdf(d, x, drop = TRUE, elementwise = NULL, ...)

S3 method for class 'Empirical'
quantile(x, probs, drop = TRUE, elementwise = NULL, ...)

S3 method for class 'Empirical'
support(d, drop = TRUE, ...)

Arguments

x A vector of elements whose cumulative probabilities you would like to deter-
mine given the distribution ‘d‘.

q vector of quantiles.

y vector of observations of the empirical distribution with two or more non-missing
finite values.

lower.tail logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x]. or
"density".

na.rm logical evaluating to TRUE or FALSE indicating whether NA values should be
stripped before the computation proceeds.

log, log.p logical; if TRUE, probabilities p are given as log(p).

method character; the method to calculate the empirical density. Either "hist" (default)

... Currently not used.

p vector of probabilities.

n The number of samples to draw. Defaults to ‘1L‘.

type integer between 1L and 3L (default) selecting one of three algorithms. See De-
tails for more information.

drop logical. Should the result be simplified to a vector if possible?

d An ‘Empirical‘ object created by a call to [Empirical()].

elementwise logical. Should each distribution in x be evaluated at all elements of probs
(elementwise = FALSE, yielding a matrix)? Or, if x and probs have the same
length, should the evaluation be done element by element (elementwise = TRUE,
yielding a vector)? The default of NULL means that elementwise = TRUE is used
if the lengths match and otherwise elementwise = FALSE is used.

probs A vector of probabilities.

Details

The creation function [Empirical()] allows for a variety of different objects as main input x.

* Vector: Assumes that the vector contains a series of observations from one empirical distribution.

* List (named or unnamed) of vectors: Each element in the list describes one empirical distribution
defined by the numeric values in each of the vectors.

8 Empirical

* Matrix or data.frame: Each row corresponds to one empirical distribution, whilst the columns
contain the individual observations.

Missing values are allowed, however, each distribution requires at least two finite observations
(-Inf/Inf is replaced by NA).

Support: R, the set of all real numbers

Mean:

x̄ =
1

N

N∑
i=1

xi

Variance:
1

N − 1

N∑
i=1

(xi − x̄)

Skewness:

S1 =
√
N

∑N
i=1(xi−x̄)3√(∑N
i=1(xi−x̄)2

)3

S2 =

√
N∗(N−1)

(N−2) S1 (only defined for N > 2)

S3 =
√

(1− 1
N)3 ∗ S1 (default)

For more details about the different types of sample skewness see Joanes and Gill (1998).

Kurtosis:

K1 = N ∗
∑N

i=1(xi−x̄)4(∑N
i=1(xi−x̄)2

)2 − 3

K2 = (N+1)∗K1+6)∗(N−1)
(N−2)∗(N−3) (only defined for N > 2)

K3 =
(
1− 1

N

)2 ∗ (K1 + 3)− 3 (default)

For more details about the different types of sample kurtosis see Joanes and Gill (1998).

TODO(RETO): Add empirical distribution function information (step-function 1/N)

Probability density function (p.d.f):

This function returns the same values that you get from a Z-table. Note ‘quantile()‘ is the inverse of
‘cdf()‘. Please see the documentation of [Empirical()] for some properties of the Empirical distri-
bution, as well as extensive examples showing to how calculate p-values and confidence intervals.

Value

An ‘Empirical‘ object.

In case of a single distribution object or ‘n = 1‘, either a numeric vector of length ‘n‘ (if ‘drop =
TRUE‘, default) or a ‘matrix‘ with ‘n‘ columns (if ‘drop = FALSE‘).

In case of a single distribution object, either a numeric vector of length ‘probs‘ (if ‘drop = TRUE‘,
default) or a ‘matrix‘ with ‘length(x)‘ columns (if ‘drop = FALSE‘). In case of a vectorized distri-
bution object, a matrix with ‘length(x)‘ columns containing all possible combinations.

In case of a single distribution object, either a numeric vector of length ‘probs‘ (if ‘drop = TRUE‘,
default) or a ‘matrix‘ with ‘length(x)‘ columns (if ‘drop = FALSE‘). In case of a vectorized distri-
bution object, a matrix with ‘length(x)‘ columns containing all possible combinations.

Empirical 9

In case of a single distribution object, either a numeric vector of length ‘probs‘ (if ‘drop = TRUE‘,
default) or a ‘matrix‘ with ‘length(probs)‘ columns (if ‘drop = FALSE‘). In case of a vectorized
distribution object, a matrix with ‘length(probs)‘ columns containing all possible combinations.

In case of a single distribution object, a numeric vector of length 2 with the minimum and maximum
value of the support (if ‘drop = TRUE‘, default) or a ‘matrix‘ with 2 columns. In case of a vectorized
distribution object, a matrix with 2 columns containing all minima and maxima.

References

Joanes DN and Gill CA (1998). “Comparing Measures of Sample Skewness and Kurtosis.” Journal
of the Royal Statistical Society D, 47(1), 183–189. doi:10.1111/14679884.00122

Examples

require("distributions3")
set.seed(28)

X <- Empirical(rnorm(50))
X

mean(X)
variance(X)
skewness(X)
kurtosis(X)

random(X, 10)

pdf(X, 2)
log_pdf(X, 2)

cdf(X, 4)
quantile(X, 0.7)

example: allowed types/classes of input arguments

Single vector (will be coerced to numeric)
Y1 <- rnorm(3, mean = -10)
d1 <- Empirical(Y1)
d1
mean(d1)

Unnamed list of vectors
Y2 <- list(as.character(rnorm(3, mean = -10)),

runif(6),
rpois(4, lambda = 15))

d2 <- Empirical(Y2)
d2
mean(d2)

Named list of vectors
Y3 <- list("Normal" = as.character(rnorm(3, mean = -10)),

"Uniform" = runif(6),

https://doi.org/10.1111/1467-9884.00122

10 geom_qqrplot

"Poisson" = rpois(4, lambda = 15))
d3 <- Empirical(Y3)
d3
mean(d3)

Matrix or data.frame
Y4 <- matrix(rnorm(20), ncol = 5, dimnames = list(sprintf("D_%d", 1:4), sprintf("obs_%d", 1:5)))
d4 <- Empirical(Y4)
d4
d5 <- Empirical(as.data.frame(Y4))
d5

geom_qqrplot geom_* and stat_* for Producing Quantile Residual Q-Q Plots with
‘ggplot2‘

Description

Various geom_* and stat_* used within autoplot for producing quantile residual Q-Q plots.

Usage

geom_qqrplot(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_qqrplot_simint(
mapping = NULL,
data = NULL,
geom = "qqrplot_simint",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_qqrplot_simint(
mapping = NULL,
data = NULL,

geom_qqrplot 11

stat = "qqrplot_simint",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_qqrplot_ref(
mapping = NULL,
data = NULL,
geom = "qqrplot_ref",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
detrend = FALSE,
identity = TRUE,
probs = c(0.25, 0.75),
scale = c("normal", "uniform"),
...

)

geom_qqrplot_ref(
mapping = NULL,
data = NULL,
stat = "qqrplot_ref",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
detrend = FALSE,
identity = TRUE,
probs = c(0.25, 0.75),
scale = c("normal", "uniform"),
...

)

geom_qqrplot_confint(
mapping = NULL,
data = NULL,
stat = "qqrplot_confint",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
detrend = FALSE,
type = c("pointwise_internal", "ell", "ks", "pointwise"),

12 geom_qqrplot

level = 0.95,
identity = TRUE,
probs = c(0.25, 0.75),
scale = c("normal", "uniform"),
style = c("polygon", "line"),
...

)

GeomQqrplotConfint

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

geom_qqrplot 13

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

detrend logical, default FALSE. If set to TRUE the qqrplot is detrended, i.e, plotted as a
wormplot.

identity logical. Should the identity line be plotted or a theoretical line which passes
through probs quantiles on the "uniform" or "normal" scale.

probs numeric vector of length two, representing probabilities of reference line used.
scale character. Scale on which the quantile residuals will be shown: "uniform"

(default) for uniform scale or "normal" for normal scale. Used for the reference
line which goes through the first and third quartile of theoretical distributions.

14 geom_qqrplot

type character. Method for creating the confidence intervals. By default, an internal
point-wise routine (‘pointwise_internal‘) is used. Alternatively, band methods
provided by [qqconf::get_qq_band()] can be used: "ell" uses the equal local
level method, "ks" uses the Kolmogorov-Smirnov test, and "pointwise" uses a
slightly alternative implementation of pointwise bands. Note that for uniform
scales, the identity line must be used for reference (‘ref_identity = TRUE‘).

level numeric. The confidence level required, defaults to 0.95.

style character. Style for plotting confidence intervals. Either "polygon" (default) or
"line").

Format

An object of class GeomQqrplotConfint (inherits from Geom, ggproto, gg) of length 6.

Examples

if (require("ggplot2")) {
Fit model
data("CrabSatellites", package = "countreg")
m1_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)
m2_pois <- glm(satellites ~ color, data = CrabSatellites, family = poisson)

Compute qqrplot
q1 <- qqrplot(m1_pois, plot = FALSE)
q2 <- qqrplot(m2_pois, plot = FALSE)

d <- c(q1, q2)

Get label names
xlab <- unique(attr(d, "xlab"))
ylab <- unique(attr(d, "ylab"))
main <- attr(d, "main")
main <- make.names(main, unique = TRUE)
d$group <- factor(d$group, labels = main)

Polygon CI around identity line used as reference
gg1 <- ggplot(data = d, aes(x = expected, y = observed, na.rm = TRUE)) +
geom_qqrplot_ref() +
geom_qqrplot_confint(fill = "red") +
geom_qqrplot() +
geom_qqrplot_simint(

aes(
x = simint_expected,
ymin = simint_observed_lwr,
ymax = simint_observed_upr,
group = group

)
) +
xlab(xlab) + ylab(ylab)

gg1

newresponse 15

gg1 + facet_wrap(~group)

Polygon CI around robust reference line
gg2 <- ggplot(data = d, aes(x = expected, y = observed, na.rm = TRUE)) +

geom_qqrplot_ref(identity = FALSE, scale = attr(d, "scale")) +
geom_qqrplot_confint(identity = FALSE, scale = attr(d, "scale"), style = "line") +
geom_qqrplot() +
geom_qqrplot_simint(

aes(
x = simint_expected,
ymin = simint_observed_lwr,
ymax = simint_observed_upr,
group = group

)
) +
xlab(xlab) + ylab(ylab)

gg2
gg2 + facet_wrap(~group)

Use different `scale`s with confidence intervals
q1 <- qqrplot(m1_pois, scale = "uniform", plot = FALSE)
q2 <- qqrplot(m2_pois, plot = FALSE)

gg3 <- ggplot(data = q1, aes(x = expected, y = observed, na.rm = TRUE)) +
geom_qqrplot_ref() +
geom_qqrplot_confint(fill = "red", scale = "uniform") +
geom_qqrplot()

gg3

gg4 <- ggplot(data = q2, aes(x = expected, y = observed, na.rm = TRUE)) +
geom_qqrplot_ref() +
geom_qqrplot_confint(fill = "red", scale = "uniform") +
geom_qqrplot()

gg4
}

newresponse Extract Observed Responses from New Data

Description

Generic function and methods for extracting response variables from new data based on fitted model
objects.

Usage

newresponse(object, ...)

Default S3 method:

16 newresponse

newresponse(object, newdata, na.action = na.pass, ...)

S3 method for class 'glm'
newresponse(object, newdata, na.action = na.pass, initialize = NULL, ...)

S3 method for class 'distribution'
newresponse(object, newdata, ...)

Arguments

object a fitted model object. For the default method this needs to needs to be formula-
based so that model.frame can be used to extract the response from the original
data the model was fitted to or terms can be used to set up the response on
newdata.

... further arguments passed to methods.

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

na.action function determining how to handle missing values in newdata, by default these
are preserved.

initialize logical. Should the response variable from glm objects be initialized using the
corresponding expression from the family? If NULL (the default), the initializa-
tion is only used for binomial and quasibinomial families.

Details

newresponse is a convenience function that supports functions like proscore or proresiduals
which assess discrepancies between predictions/forecasts on new data and the corresponding ob-
served response variables.

The default method takes an approach that is similar to many predict methods which rebuild the
model.frame after dropping the response from the terms of a model object. However, here only
the response variable is preserved and all explanatory variables are dropped. Missing values values
are typically preserved (i.e., using na.pass).

If the new model.frame contains a variable "(weights)", it is preserved along with the response
variable(s).

A method for distribution objects is provided which expects that newdata is essentially already
the corresponding new response. Thus, it needs to be a vector (or data frame) of the same length as
distribution. If it is not a data frame, yet, it is transformed to one but no further modifications
are made.

Value

A data.frame (model.frame) containing the response variable (and optionally a variable with
"(weights)").

See Also

terms, model.frame

pithist 17

Examples

linear regression model
m <- lm(dist ~ speed, data = cars)

extract response variable on data used for model fitting
newresponse(m)

extract response variable on "new" data
newresponse(m, newdata = cars[1:3,])

pithist PIT Histograms for Assessing Goodness of Fit of Probability Models

Description

Probability integral transform (PIT) histograms graphically compare empirical probabilities from
fitted models with a uniform distribution. If plot = TRUE, the resulting object of class "pithist"
is plotted by plot.pithist or autoplot.pithist depending on whether the package ggplot2 is
loaded, before the "pithist" object is returned.

Usage

pithist(object, ...)

Default S3 method:
pithist(
object,
newdata = NULL,
plot = TRUE,
class = NULL,
scale = c("uniform", "normal"),
breaks = NULL,
type = c("expected", "random"),
nsim = 1L,
delta = NULL,
simint = NULL,
simint_level = 0.95,
simint_nrep = 250,
style = c("bar", "line"),
freq = FALSE,
expected = TRUE,
confint = TRUE,
xlab = "PIT",
ylab = if (freq) "Frequency" else "Density",
main = NULL,
...

)

18 pithist

Arguments

object an object from which probability integral transforms can be extracted using the
generic function procast.

... further graphical parameters forwarded to the plotting functions.

newdata an optional data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

plot logical or character. Should the plot or autoplot method be called to draw the
computed extended reliability diagram? Logical FALSE will suppress plotting,
TRUE (default) will choose the type of plot conditional if the package ggplot2 is
loaded. Alternatively "base" or "ggplot2" can be specified to explicitly choose
the type of plot.

class should the invisible return value be either a data.frame or a tbl_df. Can be set
to "data.frame" or "tibble" to explicitly specify the return class, or to NULL
(default) in which case the return class is conditional on whether the package
"tibble" is loaded.

scale controls the scale on which the PIT residuals are computed: on the probability
scale ("uniform"; default) or on the normal scale ("normal").

breaks NULL (default) or numeric to manually specify the breaks for the rootogram in-
tervals. A single numeric (larger 0) specifies the number of breaks to be auto-
matically chosen, multiple numeric values are interpreted as manually specified
breaks.

type character. In case of discrete distributions, should an expected (non-normal)
PIT histogram be computed according to Czado et al. (2009) ("expected";
default) or should the PIT be drawn randomly from the corresponding interval
("random")?

nsim positive integer, defaults to 1L. Only used when type = "random"; how many
simulated PITs should be drawn?

delta NULL or numeric. The minimal difference to compute the range of probabilities
corresponding to each observation to get (randomized) quantile residuals. For
NULL (default), the minimal observed difference in the response divided by 5e-6
is used.

simint NULL (default) or logical. In case of discrete distributions, should the simulation
(confidence) interval due to the randomization be visualized?

simint_level numeric, defaults to 0.95. The confidence level required for calculating the
simulation (confidence) interval due to the randomization.

simint_nrep numeric, defaults to 250. The repetition number of simulated quantiles for cal-
culating the simulation (confidence) interval due to the randomization.

style character specifying plotting style. For style = "bar" (default) a traditional PIT
histogram is drawn, style = "line" solely plots the upper border of the bars.
If single_graph = TRUE is used (see plot.pithist), line-style PIT histograms
will be enforced.

freq logical. If TRUE, the PIT histogram is represented by frequencies, the counts
component of the result; if FALSE, probability densities, component density,
are plotted (so that the histogram has a total area of one).

pithist 19

expected logical. Should the expected values be plotted as reference?

confint logical. Should confident intervals be drawn?

xlab, ylab, main graphical parameters passed to plot.pithist or autoplot.pithist.

Details

PIT histograms graphically evaluate the probability integral transform (PIT), i.e., the value that the
predictive CDF attains at the observation, with a uniform distribution. For a well calibrated model
fit, the PIT will have a standard uniform distribution. For computation, pithist leverages the
function proresiduals employing the procast generic and then essentially draws a hist.

In addition to the plot and autoplot method for pithist objects, it is also possible to combine two
(or more) PIT histograms by c/rbind, which creates a set of PIT histograms that can then be plotted
in one go.

Value

An object of class "pithist" inheriting from data.frame or tbl_df conditional on the argument
class including the following variables:

x histogram interval midpoints on the x-axis,

y bottom coordinate of the histogram bars,

width widths of the histogram bars,

confint_lwr lower bound of the confidence interval,

confint_upr upper bound of the confidence interval,

expected y-coordinate of the expected curve.

Additionally, freq, xlab, ylab, main, and confint_level are stored as attributes.

References

Agresti A, Coull AB (1998). “Approximate is Better than “Exact” for Interval Estimation of Bino-
mial Proportions.” The American Statistician, 52(2), 119–126. doi:10.1080/00031305.1998.10480550

Czado C, Gneiting T, Held L (2009). “Predictive Model Assessment for Count Data.” Biometrics,
65(4), 1254–1261. doi:10.1111/j.15410420.2009.01191.x

Dawid AP (1984). “Present Position and Potential Developments: Some Personal Views: Statistical
Theory: The Prequential Approach”, Journal of the Royal Statistical Society: Series A (General),
147(2), 278–292. doi:10.2307/2981683

Diebold FX, Gunther TA, Tay AS (1998). “Evaluating Density Forecasts with Applications to Fi-
nancial Risk Management”. International Economic Review, 39(4), 863–883. doi:10.2307/2527342

Gneiting T, Balabdaoui F, Raftery AE (2007). “Probabilistic Forecasts, Calibration and Sharp-
ness”. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 69(2), 243–268.
doi:10.1111/j.14679868.2007.00587.x

See Also

plot.pithist, proresiduals, procast

https://doi.org/10.1080/00031305.1998.10480550
https://doi.org/10.1111/j.1541-0420.2009.01191.x
https://doi.org/10.2307/2981683
https://doi.org/10.2307/2527342
https://doi.org/10.1111/j.1467-9868.2007.00587.x

20 plot.pithist

Examples

speed and stopping distances of cars
m1_lm <- lm(dist ~ speed, data = cars)

compute and plot pithist
pithist(m1_lm)

#---
determinants for male satellites to nesting horseshoe crabs
data("CrabSatellites", package = "countreg")

linear poisson model
m1_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)
m2_pois <- glm(satellites ~ color, data = CrabSatellites, family = poisson)

compute and plot pithist as base graphic
p1 <- pithist(m1_pois, plot = FALSE)
p2 <- pithist(m2_pois, plot = FALSE)

plot combined pithist as "ggplot2" graphic
ggplot2::autoplot(c(p1, p2), single_graph = TRUE, style = "line", col = c(1, 2))

plot.pithist S3 Methods for Plotting PIT Histograms

Description

Generic plotting functions for probability integral transform (PIT) histograms of the class "pithist"
computed by link{pithist}.

Usage

S3 method for class 'pithist'
plot(
x,
single_graph = FALSE,
style = NULL,
freq = NULL,
expected = TRUE,
confint = NULL,
confint_level = 0.95,
confint_type = c("exact", "approximation"),
simint = NULL,
xlim = c(NA, NA),
ylim = c(0, NA),
xlab = NULL,
ylab = NULL,
main = NULL,

plot.pithist 21

axes = TRUE,
box = TRUE,
col = "black",
border = "black",
lwd = NULL,
lty = 1,
alpha_min = 0.2,
expected_col = NULL,
expected_lty = NULL,
expected_lwd = 1.75,
confint_col = NULL,
confint_lty = 2,
confint_lwd = 1.75,
confint_alpha = NULL,
simint_col = "black",
simint_lty = 1,
simint_lwd = 1.75,
...

)

S3 method for class 'pithist'
lines(
x,
freq = NULL,
expected = FALSE,
confint = FALSE,
confint_level = 0.95,
confint_type = c("exact", "approximation"),
simint = FALSE,
col = "black",
lwd = 2,
lty = 1,
expected_col = "black",
expected_lty = 2,
expected_lwd = 1.75,
confint_col = "black",
confint_lty = 1,
confint_lwd = 1.75,
confint_alpha = 1,
simint_col = "black",
simint_lty = 1,
simint_lwd = 1.75,
...

)

S3 method for class 'pithist'
autoplot(
object,

22 plot.pithist

single_graph = FALSE,
style = NULL,
freq = NULL,
expected = NULL,
confint = NULL,
confint_level = 0.95,
confint_type = c("exact", "approximation"),
simint = NULL,
xlim = c(NA, NA),
ylim = c(0, NA),
xlab = NULL,
ylab = NULL,
main = NULL,
legend = FALSE,
theme = NULL,
colour = NULL,
fill = NULL,
size = NULL,
linetype = NULL,
alpha = NULL,
expected_colour = NULL,
expected_size = 0.75,
expected_linetype = NULL,
expected_alpha = NA,
confint_colour = NULL,
confint_fill = NULL,
confint_size = 0.75,
confint_linetype = NULL,
confint_alpha = NULL,
simint_colour = "black",
simint_size = 0.5,
simint_linetype = 1,
simint_alpha = NA,
...

)

Arguments

single_graph logical. Should all computed extended reliability diagrams be plotted in a single
graph? If yes, style must be set to "line".

style NULL or character specifying the style of pithist. For style = "bar" a tradi-
tional PIT hisogram is drawn, for style = "line" solely the upper border line
is plotted. single_graph = TRUE always results in a combined line-style PIT
histogram.

freq NULL or logical. TRUE will enforce the PIT to be represented by frequencies
(counts) while FALSE will enforce densities.

expected logical. Should the expected values be plotted as reference?

confint NULL or logical. Should confident intervals be drawn? Either logical or as

plot.pithist 23

confint_level numeric in [0, 1]. The confidence level to be shown.

confint_type character. Which type of confidence interval should be plotted: ‘"exact"‘ or
‘"approximation"‘. According to Agresti and Coull (1998), for interval estima-
tion of binomial proportions an approximation can be better than exact.

simint NULL or logical. In case of discrete distributions, should the simulation (confi-
dence) interval due to the randomization be visualized? character string defin-
ing one of ‘"polygon"‘, ‘"line"‘ or ‘"none"‘. If freq = NULL it is taken from the
object.

xlim, ylim, xlab, ylab, main, axes, box
graphical parameters.

col, border, lwd, lty, alpha_min
graphical parameters for the main part of the base plot.

simint_col, simint_lty, simint_lwd, confint_col, confint_lty,
confint_lwd, confint_alpha, expected_col, expected_lty, expected_lwd

Further graphical parameters for the ‘confint‘ and ‘simint‘ line/polygon in the
base plot.

... further graphical parameters passed to the plotting function.

object, x an object of class pithist.

legend logical. Should a legend be added in the ggplot2 style graphic?

theme Which ‘ggplot2‘ theme should be used. If not set, theme_bw is employed.
colour, fill, size, linetype, alpha

graphical parameters for the histogram style part in the autoplot.
simint_colour, simint_size, simint_linetype, simint_alpha,
confint_colour, confint_fill, confint_size, confint_linetype,
expected_colour, expected_size, expected_linetype, expected_alpha

Further graphical parameters for the ‘confint‘ and ‘simint‘ line/polygon using
autoplot.

Details

PIT histograms graphically evaluate the probability integral transform (PIT), i.e., the value that the
predictive CDF attains at the observation, with a uniform distribution. For a well calibrated model
fit, the observation will be drawn from the predictive distribution and the PIT will have a standard
uniform distribution.

PIT histograms can be rendered as ggplot2 or base R graphics by using the generics autoplot or
plot. For a single base R graphically panel, lines adds an additional PIT histogram.

References

Agresti A, Coull AB (1998). “Approximate is Better than “Exact” for Interval Estimation of Bino-
mial Proportions.” The American Statistician, 52(2), 119–126. doi:10.1080/00031305.1998.10480550

Czado C, Gneiting T, Held L (2009). “Predictive Model Assessment for Count Data.” Biometrics,
65(4), 1254–1261. doi:10.2307/2981683

Dawid AP (1984). “Present Position and Potential Developments: Some Personal Views: Statistical
Theory: The Prequential Approach”, Journal of the Royal Statistical Society: Series A (General),
147(2), 278–292. doi:10.2307/2981683

https://doi.org/10.1080/00031305.1998.10480550
https://doi.org/10.2307/2981683
https://doi.org/10.2307/2981683

24 plot.pithist

Diebold FX, Gunther TA, Tay AS (1998). “Evaluating Density Forecasts with Applications to Fi-
nancial Risk Management”. International Economic Review, 39(4), 863–883. doi:10.2307/2527342

Gneiting T, Balabdaoui F, Raftery AE (2007). “Probabilistic Forecasts, Calibration and Sharpness”.
Journal of the Royal Statistical Society: Series B (Methodological). 69(2), 243–268. doi:10.1111/
j.14679868.2007.00587.x

See Also

pithist, procast, hist

Examples

speed and stopping distances of cars
m1_lm <- lm(dist ~ speed, data = cars)

compute and plot pithist
pithist(m1_lm)

customize colors and style
pithist(m1_lm, expected_col = "blue", lty = 2, pch = 20, style = "line")

add separate model
if (require("crch", quietly = TRUE)) {

m1_crch <- crch(dist ~ speed | speed, data = cars)
#lines(pithist(m1_crch, plot = FALSE), col = 2, lty = 2, confint_col = 2) #FIXME

}

#---
if (require("crch")) {

precipitation observations and forecasts for Innsbruck
data("RainIbk", package = "crch")
RainIbk <- sqrt(RainIbk)
RainIbk$ensmean <- apply(RainIbk[, grep("^rainfc", names(RainIbk))], 1, mean)
RainIbk$enssd <- apply(RainIbk[, grep("^rainfc", names(RainIbk))], 1, sd)
RainIbk <- subset(RainIbk, enssd > 0)

linear model w/ constant variance estimation
m2_lm <- lm(rain ~ ensmean, data = RainIbk)

logistic censored model
m2_crch <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0, dist = "logistic")

compute pithists
pit2_lm <- pithist(m2_lm, plot = FALSE)
pit2_crch <- pithist(m2_crch, plot = FALSE)

plot in single graph with style "line"
plot(c(pit2_lm, pit2_crch),

col = c(1, 2), confint_col = c(1, 2), expected_col = 3,
style = "line", single_graph = TRUE

)

https://doi.org/10.2307/2527342
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1111/j.1467-9868.2007.00587.x

plot.qqrplot 25

}

#---
determinants for male satellites to nesting horseshoe crabs
data("CrabSatellites", package = "countreg")

linear poisson model
m3_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)

compute and plot pithist as "ggplot2" graphic
pithist(m3_pois, plot = "ggplot2")

plot.qqrplot S3 Methods for Plotting Q-Q Residuals Plots

Description

Generic plotting functions for Q-Q residual plots for objects of class "qqrplot" returned by link{qqrplot}.

Usage

S3 method for class 'qqrplot'
plot(
x,
single_graph = FALSE,
detrend = NULL,
simint = NULL,
confint = NULL,
confint_type = c("pointwise_internal", "ell", "ks", "pointwise"),
confint_level = 0.95,
ref = NULL,
ref_identity = TRUE,
ref_probs = c(0.25, 0.75),
xlim = c(NA, NA),
ylim = c(NA, NA),
xlab = NULL,
ylab = NULL,
main = NULL,
axes = TRUE,
box = TRUE,
col = "black",
pch = 19,
simint_col = "black",
simint_alpha = 0.2,
confint_col = "black",
confint_lty = 2,
confint_lwd = 1.25,
confint_alpha = NULL,

26 plot.qqrplot

ref_col = "black",
ref_lty = 2,
ref_lwd = 1.25,
...

)

S3 method for class 'qqrplot'
points(
x,
detrend = NULL,
simint = FALSE,
col = "black",
pch = 19,
simint_col = "black",
simint_alpha = 0.2,
...

)

S3 method for class 'qqrplot'
autoplot(
object,
single_graph = FALSE,
detrend = NULL,
simint = NULL,
confint = NULL,
confint_type = c("pointwise_internal", "ell", "ks", "pointwise"),
confint_level = 0.95,
ref = NULL,
ref_identity = TRUE,
ref_probs = c(0.25, 0.75),
xlim = c(NA, NA),
ylim = c(NA, NA),
xlab = NULL,
ylab = NULL,
main = NULL,
legend = FALSE,
theme = NULL,
alpha = NA,
colour = "black",
fill = NA,
shape = 19,
size = 2,
stroke = 0.5,
simint_fill = "black",
simint_alpha = 0.2,
confint_colour = NULL,
confint_fill = NULL,
confint_size = NULL,

plot.qqrplot 27

confint_linetype = NULL,
confint_alpha = NULL,
ref_colour = "black",
ref_size = 0.5,
ref_linetype = 2,
...

)

Arguments

x, object an object of class qqrplot as returned by qqrplot.

single_graph logical, defaults to FALSE. In case of multiple Q-Q residual plots: should all be
drawn in a single graph?

detrend logical. Should the qqrplot be detrended, i.e, plotted as a ‘wormplot()‘? If NULL
(default) this is extracted from x/object.

simint logical or quantile specification. Should the simint of quantiles of the random-
ized quantile residuals be visualized?

confint logical or character string describing the style for plotting ‘c("polygon", "line")‘.

confint_type character. Method for creating the confidence intervals. By default, an internal
point-wise routine (‘pointwise_internal‘) is used. Alternatively, band methods
provided by [qqconf::get_qq_band()] can be used: "ell" uses the equal local
level method, "ks" uses the Kolmogorov-Smirnov test, and "pointwise" uses a
slightly alternative implementation of pointwise bands. Note that for uniform
scales, the identity line must be used for reference (‘ref_identity = TRUE‘).

confint_level numeric. The confidence level required, defaults to 0.95.

ref logical. Should a reference line be plotted?
ref_identity, ref_probs

Should the identity line be plotted as reference and otherwise which probabilities
should be used for defining the reference line?

xlim, ylim, axes, box
additional graphical parameters for base plots, whereby x is a object of class
qqrplot.

xlab, ylab, main, ...
graphical plotting parameters passed to plot or points, respectively.

col, pch graphical parameters for the main part of the base plot.
simint_col, simint_alpha, confint_col, confint_lty, confint_lwd,
ref_col, ref_lty, ref_lwd

Further graphical parameters for the ‘confint‘ and ‘simint‘ line/polygon in the
base plot.

legend logical. Should a legend be added in the ggplot2 style graphic?

theme name of the ‘ggplot2‘ theme to be used. If theme = NULL, the theme_bw is em-
ployed.

colour, fill, alpha, shape, size, stroke
graphical parameters passed to ggplot2 style plots.

28 plot.qqrplot

simint_fill, confint_colour, confint_fill, confint_size,
confint_linetype, confint_alpha, ref_colour, ref_size, ref_linetype

Further graphical parameters for the ‘confint‘ and ‘simint‘ line/polygon using
autoplot.

Details

Q-Q residuals plots draw quantile residuals (by default on the standard normal scale) against theo-
retical quantiles from the same distribution. Alternatively, quantile residuals can also be compared
on the uniform scale (scale = "uniform") using no transformation.

Q-Q residuals plots can be rendered as ggplot2 or base R graphics by using the generics autoplot
or plot. points (points.qqrplot) can be used to add Q-Q residuals to an existing base R graphics
panel.

References

Dunn KP, Smyth GK (1996). “Randomized Quantile Residuals.” Journal of Computational and
Graphical Statistics, 5(3), 236–244. doi:10.2307/1390802

See Also

qqrplot, wormplot, proresiduals, qqnorm

Examples

speed and stopping distances of cars
m1_lm <- lm(dist ~ speed, data = cars)

compute and plot qqrplot
qqrplot(m1_lm)

customize colors
qqrplot(m1_lm, plot = "base", ref_col = "blue", lty = 2, pch = 20)

add separate model
if (require("crch", quietly = TRUE)) {

m1_crch <- crch(dist ~ speed | speed, data = cars)
points(qqrplot(m1_crch, plot = FALSE), col = 2, lty = 2, simint = 2)

}

#---
if (require("crch")) {

precipitation observations and forecasts for Innsbruck
data("RainIbk", package = "crch")
RainIbk <- sqrt(RainIbk)
RainIbk$ensmean <- apply(RainIbk[,grep('^rainfc',names(RainIbk))], 1, mean)
RainIbk$enssd <- apply(RainIbk[,grep('^rainfc',names(RainIbk))], 1, sd)
RainIbk <- subset(RainIbk, enssd > 0)

linear model w/ constant variance estimation

https://doi.org/10.2307/1390802

plot.reliagram 29

m2_lm <- lm(rain ~ ensmean, data = RainIbk)

logistic censored model
m2_crch <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0, dist = "logistic")

compute qqrplots
qq2_lm <- qqrplot(m2_lm, plot = FALSE)
qq2_crch <- qqrplot(m2_crch, plot = FALSE)

plot in single graph
plot(c(qq2_lm, qq2_crch), col = c(1, 2), simint_col = c(1, 2), single_graph = TRUE)

}

#---
determinants for male satellites to nesting horseshoe crabs
data("CrabSatellites", package = "countreg")

linear poisson model
m3_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)

compute and plot qqrplot as "ggplot2" graphic
qqrplot(m3_pois, plot = "ggplot2")

plot.reliagram S3 Methods for a Reliagram (Extended Reliability Diagram)

Description

Generic plotting functions for reliability diagrams of the class "reliagram" computed by link{reliagram}.

Usage

S3 method for class 'reliagram'
plot(
x,
single_graph = FALSE,
minimum = 0,
confint = TRUE,
ref = TRUE,
xlim = c(0, 1),
ylim = c(0, 1),
xlab = NULL,
ylab = NULL,
main = NULL,
col = "black",
fill = adjustcolor("black", alpha.f = 0.2),
alpha_min = 0.2,
lwd = 2,

30 plot.reliagram

pch = 19,
lty = 1,
type = NULL,
add_hist = TRUE,
add_info = TRUE,
add_rug = TRUE,
add_min = TRUE,
axes = TRUE,
box = TRUE,
...

)

S3 method for class 'reliagram'
lines(
x,
minimum = 0,
confint = FALSE,
ref = FALSE,
col = "black",
fill = adjustcolor("black", alpha.f = 0.2),
alpha_min = 0.2,
lwd = 2,
pch = 19,
lty = 1,
type = "b",
...

)

S3 method for class 'reliagram'
autoplot(
object,
single_graph = FALSE,
minimum = 0,
confint = TRUE,
ref = TRUE,
xlim = c(0, 1),
ylim = c(0, 1),
xlab = NULL,
ylab = NULL,
main = NULL,
colour = "black",
fill = adjustcolor("black", alpha.f = 0.2),
alpha_min = 0.2,
size = 1,
shape = 19,
linetype = 1,
type = NULL,
add_hist = TRUE,

plot.reliagram 31

add_info = TRUE,
add_rug = TRUE,
add_min = TRUE,
legend = FALSE,
...

)

Arguments

single_graph logical. Should all computed extended reliability diagrams be plotted in a single
graph?

minimum, ref, xlim, ylim, col, fill, alpha_min, lwd, pch, lty, type, add_hist,
add_info, add_rug, add_min, axes, box

additional graphical parameters for base plots, whereby x is a object of class
reliagram.

confint logical. Should confident intervals be calculated and drawn?

xlab, ylab, main graphical parameters.

... further graphical parameters.

object, x an object of class reliagram.
colour, size, shape, linetype, legend

graphical parameters passed for ggplot2 style plots, whereby object is a object
of class reliagram.

Details

Reliagrams evaluate if a probability model is calibrated (reliable) by first partitioning the forecast
probability for a binary event into a certain number of bins and then plotting (within each bin) the
averaged forecast probability against the observered/empirical relative frequency.

For continous probability forecasts, reliability diagrams can be plotted either for a pre-specified
threshold or for a specific quantile probability of the response values.

Reliagrams can be rendered as ggplot2 or base R graphics by using the generics autoplot or plot.
For a single base R graphically panel, points adds an additional reliagram.

References

Wilks DS (2011) Statistical Methods in the Atmospheric Sciences, 3rd ed., Academic Press, 704 pp.

See Also

link{reliagram}, procast

Examples

speed and stopping distances of cars
m1_lm <- lm(dist ~ speed, data = cars)

compute and plot reliagram
reliagram(m1_lm)

32 plot.rootogram

customize colors
reliagram(m1_lm, ref = "blue", lty = 2, pch = 20)

add separate model
if (require("crch", quietly = TRUE)) {

m1_crch <- crch(dist ~ speed | speed, data = cars)
lines(reliagram(m1_crch, plot = FALSE), col = 2, lty = 2, confint = 2)

}

#---
if (require("crch")) {

precipitation observations and forecasts for Innsbruck
data("RainIbk", package = "crch")
RainIbk <- sqrt(RainIbk)
RainIbk$ensmean <- apply(RainIbk[,grep('^rainfc',names(RainIbk))], 1, mean)
RainIbk$enssd <- apply(RainIbk[,grep('^rainfc',names(RainIbk))], 1, sd)
RainIbk <- subset(RainIbk, enssd > 0)

linear model w/ constant variance estimation
m2_lm <- lm(rain ~ ensmean, data = RainIbk)

logistic censored model
m2_crch <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0, dist = "logistic")

compute reliagrams
rel2_lm <- reliagram(m2_lm, plot = FALSE)
rel2_crch <- reliagram(m2_crch, plot = FALSE)

plot in single graph
plot(c(rel2_lm, rel2_crch), col = c(1, 2), confint = c(1, 2), ref = 3, single_graph = TRUE)

}

#---
determinants for male satellites to nesting horseshoe crabs
data("CrabSatellites", package = "countreg")

linear poisson model
m3_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)

compute and plot reliagram as "ggplot2" graphic
reliagram(m3_pois, plot = "ggplot2")

plot.rootogram S3 Methods for Plotting Rootograms

Description

Generic plotting functions for rootograms of the class "rootogram" computed by link{rootogram}.

plot.rootogram 33

Usage

S3 method for class 'rootogram'
plot(
x,
style = NULL,
scale = NULL,
expected = NULL,
ref = NULL,
confint = NULL,
confint_level = 0.95,
confint_type = c("tukey", "pointwise", "simultaneous"),
confint_nrep = 1000,
xlim = c(NA, NA),
ylim = c(NA, NA),
xlab = NULL,
ylab = NULL,
main = NULL,
axes = TRUE,
box = FALSE,
col = "darkgray",
border = "black",
lwd = 1,
lty = 1,
alpha_min = 0.8,
expected_col = 2,
expected_pch = 19,
expected_lty = 1,
expected_lwd = 2,
confint_col = "black",
confint_lty = 2,
confint_lwd = 1.75,
ref_col = "black",
ref_lty = 1,
ref_lwd = 1.25,
...

)

S3 method for class 'rootogram'
autoplot(
object,
style = NULL,
scale = NULL,
expected = NULL,
ref = NULL,
confint = NULL,
confint_level = 0.95,
confint_type = c("tukey", "pointwise", "simultaneous"),
confint_nrep = 1000,

34 plot.rootogram

xlim = c(NA, NA),
ylim = c(NA, NA),
xlab = NULL,
ylab = NULL,
main = NULL,
legend = FALSE,
theme = NULL,
colour = "black",
fill = "darkgray",
size = 0.5,
linetype = 1,
alpha = NA,
expected_colour = 2,
expected_size = 1,
expected_linetype = 1,
expected_alpha = 1,
expected_fill = NA,
expected_stroke = 0.5,
expected_shape = 19,
confint_colour = "black",
confint_size = 0.5,
confint_linetype = 2,
confint_alpha = NA,
ref_colour = "black",
ref_size = 0.5,
ref_linetype = 1,
ref_alpha = NA,
...

)

Arguments

x, object an object of class rootogram.

style character specifying the syle of rootogram.

scale character specifying whether raw frequencies or their square roots (default)
should be drawn.

expected Should the expected (fitted) frequencies be plotted?

ref logical. Should a reference line be plotted?

confint logical. Should confident intervals be drawn?

confint_level numeric. The confidence level required.

confint_type character. Should "tukey", "pointwise", or "simultaneous" confidence in-
tervals be visualized?

confint_nrep numeric. The repetition number of simulation for computing the confidence
intervals.

xlim, ylim, xlab, ylab, main, axes, box
graphical parameters.

plot.rootogram 35

col, border, lwd, lty, alpha_min
graphical parameters for the histogram style part of the base plot.

expected_col, expected_pch, expected_lty, expected_lwd, ref_col,
ref_lty, ref_lwd, expected_colour, expected_size, expected_linetype,
expected_alpha, expected_fill, expected_stroke, expected_shape,
ref_colour, ref_size, ref_linetype, ref_alpha, confint_col, confint_lty,
confint_lwd, confint_colour, confint_size, confint_linetype,
confint_alpha

Further graphical parameters for the ‘expected‘ and ‘ref‘ line using either autoplot
or plot.

... further graphical parameters passed to the plotting function.
legend logical. Should a legend be added in the ggplot2 style graphic?
theme Which ‘ggplot2‘ theme should be used. If not set, theme_bw is employed.
colour, fill, size, linetype, alpha

graphical parameters for the histogram style part in the autoplot.

Details

Rootograms graphically compare (square roots) of empirical frequencies with expected (fitted) fre-
quencies from a probability model. For the observed distribution the histogram is drawn on a square
root scale (hence the name) and superimposed with a line for the expected frequencies. The his-
togram can be "standing" on the x-axis (as usual), or "hanging" from the expected (fitted) curve,
or a "suspended" histogram of deviations can be drawn.

Rootograms are associated with the work of John W. Tukey (see Tukey 1977) and were originally
proposed for assessing the goodness of fit of univariate distributions and extended by Kleiber and
Zeileis (2016) to regression setups.

As the expected distribution is typically a sum of different conditional distributions in regression
models, the "pointwise" confidence intervals for each bin can be computed from mid-quantiles
of a Poisson-Binomial distribution (Wilson and Einbeck 2021). Corresponding "simultaneous"
confidence intervals for all bins can be obtained via simulation from the Poisson-Binomial distri-
butions. As the pointwise confidence intervals are typically not substantially different from the
warning limits of Tukey (1972, p. 61), set at +/- 1, these "tukey" intervals are used by default.

Note that for computing the exact "pointwise" intervals from the Poisson-Binomial distribution,
the PoissonBinomial needs to be installed. Otherwise, a warning is issueed and a normal approxi-
mation is used.

References

Kleiber C, Zeileis A (2016). “Visualizing Count Data Regressions Using Rootograms.” The Amer-
ican Statistician, 70(3), 296–303. doi:10.1080/00031305.2016.1173590

Tukey JW (1972), “Some Graphic and Semigraphic Displays,” in Statistical Papers in Honor of
George W. Snedecor, pp.293–316. Bancroft TA (Ed.). Iowa State University Press, Ames. Reprinted
in William S. Cleveland (Ed.) (1988). The Collected Works of John W. Tukey, Volume V. Graphics:
1965–1985, Wadsworth & Brooks/Cole, Pacific Grove.

Tukey JW (1977). Exploratory Data Analysis. Addison-Wesley, Reading.

Wilson P, Einbeck J (2021). “A Graphical Tool for Assessing the Suitability of a Count Regression
Model”, Austrian Journal of Statistics, 50(1), 1–23. doi:10.17713/ajs.v50i1.921

https://doi.org/10.1080/00031305.2016.1173590
https://doi.org/10.17713/ajs.v50i1.921

36 plot.rootogram

See Also

rootogram, procast

Examples

speed and stopping distances of cars
m1_lm <- lm(dist ~ speed, data = cars)

compute and plot rootogram
rootogram(m1_lm)

customize colors
rootogram(m1_lm, ref_col = "blue", lty = 2, pch = 20)

#---
if (require("crch")) {

precipitation observations and forecasts for Innsbruck
data("RainIbk", package = "crch")
RainIbk <- sqrt(RainIbk)
RainIbk$ensmean <- apply(RainIbk[, grep("^rainfc", names(RainIbk))], 1, mean)
RainIbk$enssd <- apply(RainIbk[, grep("^rainfc", names(RainIbk))], 1, sd)
RainIbk <- subset(RainIbk, enssd > 0)

linear model w/ constant variance estimation
m2_lm <- lm(rain ~ ensmean, data = RainIbk)

logistic censored model
m2_crch <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0, dist = "logistic")

compute rootograms FIXME
#r2_lm <- rootogram(m2_lm, plot = FALSE)
#r2_crch <- rootogram(m2_crch, plot = FALSE)

plot in single graph
#plot(c(r2_lm, r2_crch), col = c(1, 2))

}

#---
determinants for male satellites to nesting horseshoe crabs
data("CrabSatellites", package = "countreg")

linear poisson model
m3_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)

compute and plot rootogram as "ggplot2" graphic
rootogram(m3_pois, plot = "ggplot2")

#---
artificial data from negative binomial (mu = 3, theta = 2)
and Poisson (mu = 3) distribution
set.seed(1090)

procast 37

y <- rnbinom(100, mu = 3, size = 2)
x <- rpois(100, lambda = 3)

glm method: fitted values via glm()
m4_pois <- glm(y ~ x, family = poisson)

correctly specified Poisson model fit
par(mfrow = c(1, 3))
r4a_pois <- rootogram(m4_pois, style = "standing", ylim = c(-2.2, 4.8), main = "Standing")
r4b_pois <- rootogram(m4_pois, style = "hanging", ylim = c(-2.2, 4.8), main = "Hanging")
r4c_pois <- rootogram(m4_pois, style = "suspended", ylim = c(-2.2, 4.8), main = "Suspended")
par(mfrow = c(1, 1))

procast Procast: Probabilistic Forecasting

Description

Generic function and methods for computing various kinds of probabilistic forecasts from (regres-
sion) models.

Usage

procast(
object,
newdata = NULL,
na.action = na.pass,
type = "distribution",
at = 0.5,
drop = FALSE,
...

)

Default S3 method:
procast(
object,
newdata = NULL,
na.action = na.pass,
type = c("distribution", "mean", "variance", "quantile", "probability", "density",

"loglikelihood", "parameters", "kurtosis", "skewness"),
at = 0.5,
drop = FALSE,
...

)

S3 method for class 'lm'
procast(
object,

38 procast

newdata = NULL,
na.action = na.pass,
type = "distribution",
at = 0.5,
drop = FALSE,
...,
sigma = "ML"

)

S3 method for class 'glm'
procast(
object,
newdata = NULL,
na.action = na.pass,
type = "distribution",
at = 0.5,
drop = FALSE,
...,
dispersion = NULL

)

S3 method for class 'bamlss'
procast(
object,
newdata = NULL,
na.action = na.pass,
type = "distribution",
at = 0.5,
drop = FALSE,
...,
distributions3 = FALSE

)

S3 method for class 'disttree'
procast(
object,
newdata = NULL,
na.action = na.pass,
type = "distribution",
at = 0.5,
drop = FALSE,
...,
distributions3 = FALSE

)

Arguments

object a fitted model object. For the default method this needs to have a prodist
method (or object can inherit from distribution directly).

procast 39

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

na.action function determining what should be done with missing values in newdata. The
default is to employ NA.

type character specifying the type of probabilistic forecast to compute. The de-
fault is to return a "distribution" object (using the infrastructure from dis-
tributions3). Alternatively, just the "parameters" of the distribution can be
computed or the corresponding moments: "mean", "variance", "skewness",
"kurtosis". Finally, standard functions for the distribution can be evaluated
(at argument at, see below), namely the "density" (or equivalently "pdf" or
"pmf"), the "log_likelihood" (or equivalently "log_pdf"), the "quantile"
function, or the cumulative "probability" (or equivalently "cdf").

at numeric vector at which the forecasts should be evaluated if type specifies a
function that takes an additional argument.

drop logical. Should forecasts be returned in a data frame (default) or (if possible)
dropped to a vector, see return value description below.

... further parameters passed to methods. In particular, this includes the logical
argument elementwise = NULL. Should each element of distribution only be
evaluated at the corresponding element of at (elementwise = TRUE) or at all
elements in at (elementwise = FALSE). Elementwise evaluation is only possi-
ble if the number of observations is the same as the length of at and in that case
a vector of the same length is returned. Otherwise a matrix is returned. The
default is to use elementwise = TRUE if possible, and otherwise elementwise
= FALSE.

sigma character or numeric or NULL. Specification of the standard deviation sigma to
be used for the Normal distribution in the lm method. The default "ML" (or
equivalently "MLE" or NULL) uses the maximum likelihood estimate based on the
residual sum of squares divided by the number of observations, n. Alternatively,
sigma = "OLS" uses the least-squares estimate (divided by the residual degrees
of freedom, n - k). Finally, a concrete numeric value can also be specified in
sigma.

dispersion character or numeric or NULL. Specification of the dispersion parameter in the
glm method. The default NULL (or equivalently "deviance") is to use the deviance
divided by the number of observations, n. Alternatively, dispersion = "Chisquared"
uses the Chi-squared statistic divided by the residual degrees of freedom, n - k.
Finally, a concrete numeric value can also be specified in dispersion.

distributions3 logical. If a dedicated distributions3 object is available (e.g., such as Normal)
and uses the same parameterization, should this be used instead of the general
disttree distribution?

Details

The function procast provides a unified framework for probabilistic forcasting (or procasting,
for short) based on probabilistic (regression) models, also known as distributional regression ap-
proaches. Typical types of predictions include quantiles, probabilities, (conditional) expectations,

40 procast

variances, and (log-)densities. Internally, procast methods typically compute the predicted pa-
rameters for each observation and then compute the desired outcome for the distributions with the
respective parameters.

Some quantities, e.g., the moments of the distribution (like mean or variance), can be computed di-
rectly from the predicted parameters of the distribution while others require an additional argument
at which the distribution is evaluated (e.g., the probability of a quantile or an observation of the
response).

The default procast method leverages the S3 classes and methods for probability distributions from
the distributions3 package. In a first step the predicted probability distribution object is obtained
and, by default (type = "distribution"), returned in order to reflect the distributional nature of
the forecast. For all other types (e.g., "mean", "quantile", or "density"), the corresponding
extractor methods (e.g., mean, quantile, or pdf) are used to compute the desired quantity from the
distribution objects. The examples provide some worked illustrations.

Package authors or users, who want to enable procast for new types of model objects, only need
to provide a suitable prodist extractor for the predicted probability distribution. Then the default
procast works out of the box. However, if the distributions3 package does not support the neces-
sary probability distribution, then it may also be necessary to implement a new distribution objects,
see apply_dpqr.

Value

Either a data.frame of predictions with the same number of rows as the newdata (or the original
observations if that is NULL). If drop = TRUE predictions with just a single column are simplified to
a vector and predictions with multiple columns to a matrix.

Examples

load packages
library("topmodels")
library("distributions3")

Poisson regression model for FIFA 2018 data:
number of goals scored by each team in each game, explained by
predicted ability difference of the competing teams
data("FIFA2018", package = "distributions3")
m <- glm(goals ~ difference, data = FIFA2018, family = poisson)

predicted probability distributions for all matches (in sample)
head(procast(m))
head(procast(m, drop = TRUE))

procasts for new data
much lower, equal, and much higher ability than opponent
nd <- data.frame(difference = c(-1, 0, 1))

predicted goal distribution object
goals <- procast(m, newdata = nd, drop = TRUE)
goals

predicted densities/probabilities for scoring 0, 1, ..., 5 goals

promodel 41

procast(m, newdata = nd, type = "density", at = 0:5)
by hand
pdf(goals, 0:5)

means and medians
procast(m, newdata = nd, type = "mean")
procast(m, newdata = nd, type = "quantile", at = 0.5)
by hand
mean(goals)
quantile(goals, 0.5)

evaluate procast elementwise or for all possible combinations
of distributions from 'nd' and observations in 'at'
procast(m, newdata = nd, type = "probability", at = 1:3, elementwise = TRUE)
procast(m, newdata = nd, type = "probability", at = 1:3, elementwise = FALSE)

compute in-sample log-likelihood sum via procast
sum(procast(m, type = "density", at = FIFA2018$goals, log = TRUE))
logLik(m)

promodel Predictions and Residuals Dispatch for Probabilistic Models

Description

The function promodel is a wrapper for dispatching the base predict and residuals methods
to the procast and proresiduals functions for probabilistic forecasts and probabilistic residuals,
respectively.

Usage

promodel(object)

S3 method for class 'promodel'
residuals(object, ...)

S3 method for class 'promodel'
predict(object, ...)

Arguments

object a fitted model object for which procast and/or proresiduals work.

... further arguments passed on to procast or proresiduals, respectively.

42 proresiduals

Details

The default methods for procast and proresiduals in this package make a wide range of different
probabilistic forecasts and probabilistic residuals available for many fitted model object classes.
However, it may sometimes be useful to call these flexible methods via the base predict and
residuals methods. For example, this may be useful in combination with other packages that rely
on the base functions such as marginaleffects.

Therefore, the promodel wrapper function simply adds an additional class "promodel" (probabilis-
tic model) to the original class of an object. Then the methods for predict and residuals then
strip off this class again before calling procast and proresiduals, respectively.

Examples

Poisson regression model for FIFA 2018 data:
number of goals scored by each team in each game, explained by
predicted ability difference of the competing teams
data("FIFA2018", package = "distributions3")
m <- glm(goals ~ difference, data = FIFA2018, family = poisson)

prediction using a new data set (final of the tournament)
final <- tail(FIFA2018, 2)

base predict method computes linear predictor on link scale (here in logs)
predict(m, newdata = final)

procast-based method computes distribution object by default
pm <- promodel(m)
predict(pm, newdata = final)

all other procast types are available as well
predict(pm, newdata = final, type = "density", at = 0:4)
predict(pm, newdata = final, type = "cdf", at = 0:4)

the base residuals method defaults to deviance residuals
but the proresiduals-based method defaults to quantile residuals
head(residuals(m))
head(residuals(pm))

proresiduals Residuals for Probabilistic Regression Models

Description

Generic function and default method for (randomized) quantile residuals, PIT, Pearson, and raw
response residuals based on distributions3 support.

proresiduals 43

Usage

proresiduals(object, ...)

Default S3 method:
proresiduals(
object,
newdata = NULL,
type = c("quantile", "pit", "pearson", "response"),
nsim = NULL,
prob = NULL,
delta = NULL,
...

)

Arguments

object an object for which a newresponse and a prodist method is available.

... further parameters passed to methods.

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

type character indicating whether quantile (default), PIT, Pearson, or raw response
residuals should be computed.

nsim integer. The number of randomly simulated residuals of type = "quantile" or
"pit". By default one simulation is returned.

prob numeric. Instead of simulating the probabilities (between 0 and 1) for type =
"quantile" or "pit", a vector of probabilities can be specified, e.g., prob =
0.5 corresponding to mid-quantile residuals.

delta numeric. The minimal difference to compute the range of proabilities corre-
sponding to each observation according to get (randomized) "quantile" or
"pit" residuals. For NULL, the minimal observed difference in the resonse di-
vided by 5e-6 is used. Ignored for continuous distributions.

Details

The new generic function proresiduals comes with a powerful default method that is based on
the following idea: newresponse and prodist can be used to extract the observed response and
expected distribution for it, respectively. For all model classes that have methods for these two
generic functions, proresiduals can compute a range of different types of residuals.

The simplest definition of residuals are the so-called "response" residuals which simply compute
the difference between the observations and the expected means. The "pearson" residuals addition-
ally standardize these residuals by the square root of the expected variance. Thus, these residuals
are based only on the first and on the first two moments, respectively.

To assess the entire distribution and not just the first moments, there are also residuals based on the
probability integral transform (PIT). For regression models with a continuous response distribution,
"pit" residuals (see Warton 2007) are simply the expected cumulative distribution (CDF) evaluated
at the observations (Dawid, 1984). For discrete distributions, a uniform random value is drawn from

44 proresiduals

the range of probabilities between the CDF at the observation and the supremum of the CDF to the
left of it. If the model fits well the PIT residuals should be uniformly distributed.

In order to obtain normally distributed residuals for well-fitting models (like often desired in lin-
ear regression models), "quantile" residuals, proposed by Dunn and Smyth (1996), additionally
transform the PIT residuals by the standard normal quantile function.

As quantile residuals and PIT residuals are subject to randomness for discrete distributions (and
also for mixed discrete-continuous distributions), it is sometimes useful to explore the extent of
the random variation. This can be done either by obtaining multiple replications (via nsim) or by
computing fixed quantiles of each probability interval such as prob = 0.5 (corresponding to mid-
quantile residuals, see Feng et al. 2020). Another common setting is prob = c(0, 1) yielding the
range of possible residuals.

Value

A vector or matrix of residuals. A matrix of residuals is returned if more than one replication of
quantile or PIT residuals is computed, i.e., if either random > 1 or random = FALSE and length(prob)
> 1.

References

Dawid AP (1984). “Present Position and Potential Developments: Some Personal Views: Statistical
Theory: The Prequential Approach.” Journal of the Royal Statistical Society A, 147(2), 278–292.
doi:10.2307/2981683.

Dunn KP, Smyth GK (1996). “Randomized Quantile Residuals.” Journal of Computational and
Graphical Statistics, 5(3), 236–244. doi:10.2307/1390802

Feng C, Li L, Sadeghpour A (2020). “A Comparison of Residual Diagnosis Tools for Diagnos-
ing Regression Models for Count Data” BMC Medical Research Methodology, 20(175), 1–21.
doi:10.1186/s12874020010552

Warton DI, Thibaut L, Wang YA (2017) “The PIT-Trap – A ‘Model-Free’ Bootstrap Procedure for
Inference about Regression Models with Discrete, Multivariate Responses”. PLOS ONE, 12(7),
1–18. doi:10.1371/journal.pone.0181790.

See Also

qnorm, qqrplot

Examples

Poisson GLM for FIFA 2018 data
data("FIFA2018", package = "distributions3")
m <- glm(goals ~ difference, data = FIFA2018, family = poisson)

random quantile residuals (on original data)
proresiduals(m)

various flavors of residuals on small new data
nd <- data.frame(goals = c(1, 1, 1), difference = c(-1, 0, 1))

quantile residuals: random (1 sample), random (5 samples), mid-quantile (non-random)

https://doi.org/10.2307/2981683
https://doi.org/10.2307/1390802
https://doi.org/10.1186/s12874-020-01055-2
https://doi.org/10.1371/journal.pone.0181790

proscore 45

proresiduals(m, newdata = nd, type = "quantile")
proresiduals(m, newdata = nd, type = "quantile", nsim = 5)
proresiduals(m, newdata = nd, type = "quantile", prob = 0.5)

PIT residuals (without transformation to normal): random vs. minimum/maximum quantile
proresiduals(m, newdata = nd, type = "pit", nsim = 5)
proresiduals(m, newdata = nd, type = "pit", prob = c(0, 1))

raw response residuals (observation - expected mean)
proresiduals(m, newdata = nd, type = "response")

standardized Pearson residuals (response residuals divided by standard deviation)
proresiduals(m, newdata = nd, type = "pearson")

compute residuals by manually obtaining distribution and response
proresiduals(procast(m, newdata = nd, drop = TRUE), nd$goals)

proscore Scoring Probabilistic Forecasts

Description

Generic function and default method for computing various kinds of scores for fitted or predicted
probability distributions from (regression) models.

Usage

proscore(object, newdata = NULL, ...)

Default S3 method:
proscore(

object,
newdata = NULL,
na.action = na.pass,
type = c("logs", "crps"),
aggregate = TRUE,
drop = FALSE,
...

)

Arguments

object a fitted model object. For the default method this needs to have a prodist and
a newresponse method.

newdata optionally, a data frame in which to look for variables with which to predict and
from which to obtain the response variable. If omitted, the original observations
are used.

... further parameters passed to the aggregate function (if any).

46 proscore

na.action function determining what should be done with missing values in newdata. The
default is to employ NA.

type character specifying the type of score to compute. Avaible types: "logs" (or
equivalently "log-score"), "loglikelihood" (or equivalently "log_pdf"),
"CRPS" (or equivalently "RPS"), "MAE", "MSE", "DSS" (or equivalently "Dawid-Sebastiani").
Upper or lower case spellings can be used interchangably, hyphens or under-
scores can be included or omitted. Setting type = NULL yields all available
scores.

aggregate logical or function to be used for aggregating scores across observations. Setting
aggregate = TRUE (the default) corresponds to using mean.

drop logical. Should scores be returned in a data frame (default) or (if possible)
dropped to a vector?

Details

The function proscore provides a unified framework for scoring probabilistic forecasts (in-sample
or out-of-sample). The following scores are currently available, using the following notation: Y
is the predicted random variable with cumulative distribution function F (·) and probability density
function f(·). The corresponding expectation and variance are denoted by E(Y) and V (Y). The
actual observation is y.

Log-score: Also known as logarithmic score. This is the negative log-likelihood where the negative
sign has the effect that smaller values indicate a better fit.

− log f(y)

Log-likelihood: Also known as log-density. Clearly, this is equivalent to the log-score above but
using the conventional sign where bigger values indicate a better fit.

log f(y)

Continuous ranked probability score (CRPS):∫ ∞

−∞
(F (x)− 1(x ≥ y))

2 dx

where 1(·) denotes the indicator function.

In case of a discrete rather than a continuous distribution, the ranked probability score (RPS) is
defined analogously using the sum rather than the integral. In other words it is then the sum of the
squared deviations between the predicted cumulative probabilities F (x) and the ideal step function
for the actual observation y.

Mean absolute error (MAE):

|y − E(Y)|

Mean squared error (MSE):

(y − E(Y))
2

proscore 47

Dawid-Sebastiani score (DSS):

(y − E(Y))
2

V (Y)
+ log(V (Y))

Internally, the default proscore method first computes the fitted/predicted probability distribution
object using prodist (corresponding to Y above) and then obtains the corresponding observation y
using newresponse. Subsequently, the scores are evaluated using either the log_pdf method, crps
method, or simply the mean. Finally, the resulting individual scores per observation can be returned
as a full data frame, or aggregated (e.g., by using mean, sum, or summary, etc.).

Value

Either a data.frame of scores (if drop = FALSE, default) or a named numeric vector (if drop =
TRUE and the scores are not a matrix). The names are the type specified by the user (i.e., are not
canonicalized by partial matching etc.).

Examples

Poisson regression model for FIFA 2018 data:
number of goals scored by each team in each game, explained by
predicted ability difference of the competing teams
data("FIFA2018", package = "distributions3")
m <- glm(goals ~ difference, data = FIFA2018, family = poisson)

default: in-sample mean log-score and CRPS
proscore(m)

element-wise score using a new data set (final of the tournament)
final <- tail(FIFA2018, 2)
proscore(m, newdata = final, aggregate = FALSE)

replicate in-sample log-likelihood
proscore(m, type = "loglik", aggregate = sum)
logLik(m)

compute mean of all available scores
proscore(m, type = NULL)

upper vs. lower case spelling is matched internally but preserved in output
proscore(m, type = c("logs", "crps"))
proscore(m, type = c("Log-score", "CRPS"))

least-squares regression for speed and breaking distance of cars
data("cars", package = "datasets")
m <- lm(dist ~ speed, data = cars)

replicate in-sample log-likelihood and residual sum of squares
(aka deviance) by taking the sum (rather than the mean) of the
log-density and squared errors, respectively
proscore(m, type = c("loglik", "MSE"), aggregate = sum)
logLik(m)

48 qqrplot

deviance(m)

qqrplot Q-Q Plots for Quantile Residuals

Description

Visualize goodness of fit of regression models by Quantile-Quantile (Q-Q) plots using quantile
residuals. If plot = TRUE, the resulting object of class "qqrplot" is plotted by plot.qqrplot or
autoplot.qqrplot before it is returned, depending on whether the package ggplot2 is loaded.

Usage

qqrplot(object, ...)

Default S3 method:
qqrplot(
object,
newdata = NULL,
plot = TRUE,
class = NULL,
detrend = FALSE,
scale = c("normal", "uniform"),
nsim = 1L,
delta = NULL,
simint = TRUE,
simint_level = 0.95,
simint_nrep = 250,
confint = TRUE,
ref = TRUE,
xlab = "Theoretical quantiles",
ylab = if (!detrend) "Quantile residuals" else "Deviation",
main = NULL,
...

)

Arguments

object an object from which probability integral transforms can be extracted using the
generic function procast.

newdata an optional data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

plot logical or character. Should the plot or autoplot method be called to draw
the computed Q-Q plot? Logical FALSE will suppress plotting, TRUE (default)
will choose the type of plot conditional if the package ggplot2 is loaded. Alter-
natively "base" or "ggplot2" can be specified to explicitly choose the type of
plot.

qqrplot 49

class should the invisible return value be either a data.frame or a tibble. Either
set class expicitly to "data.frame" vs. "tibble", or for NULL it’s chosen
automatically conditional if the package tibble is loaded.

detrend logical, defaults to FALSE. Should the qqrplot be detrended, i.e, plotted as a
wormplot?

scale character. On which scale should the quantile residuals be shown: on the prob-
ability scale ("uniform") or on the normal scale ("normal").

nsim, delta arguments passed to proresiduals.

simint logical. In case of discrete distributions, should the simulation (confidence)
interval due to the randomization be visualized?

simint_level numeric. The confidence level required for calculating the simulation (confi-
dence) interval due to the randomization.

simint_nrep numeric (positive; default 250). The number of repetitions of simulated quan-
tiles for calculating the simulation (confidence) interval due to the randomiza-
tion.

confint logical or character describing the style for plotting confidence intervals. TRUE
(default) and "line" will add point-wise confidence intervals of the (random-
ized) quantile residuals as lines, "polygon" will draw a polygon instead, and
FALSE suppresses the drawing.

ref logical, defaults to TRUE. Should a reference line be plotted?
xlab, ylab, main, ...

graphical parameters passed to plot.qqrplot or autoplot.qqrplot.

Details

Q-Q residuals plots draw quantile residuals (by default on the standard normal scale) against theo-
retical quantiles from the same distribution. Alternatively, quantile residuals can also be compared
on the uniform scale (scale = "uniform") using no transformation. For computation, qqrplot
leverages the function proresiduals employing the procast generic.

Additional options are offered for models with discrete responses where randomization of quantiles
is needed.

In addition to the plot and autoplot method for qqrplot objects, it is also possible to combine two
(or more) Q-Q residuals plots by c/rbind, which creates a set of Q-Q residuals plots that can then
be plotted in one go.

Value

An object of class "qqrplot" inheriting from "data.frame" or "tibble" conditional on the argu-
ment class with the following variables:

observed deviations between theoretical and empirical quantiles,

expected theoretical quantiles,
simint_observed_lwr

lower bound of the simulated confidence interval,
simint_observed_upr

upper bound of the simulated confidence interval,

50 qqrplot

simint_expected

TODO: (ML) Description missing.

In case of nsim > 1, a set of nsim pairs of observed and expected quantiles are returned (observed_1,
expected_1, ... observed_nsim, observed_nsim) is returned.

The "qqrplot" also contains additional attributes xlab, ylab, main, simint_level, scale, and
detrended used to create the plot.

References

Dunn KP, Smyth GK (1996). “Randomized Quantile Residuals.” Journal of Computational and
Graphical Statistics, 5(3), 236–244. doi:10.2307/1390802

See Also

plot.qqrplot, wormplot, proresiduals, qqnorm

Examples

speed and stopping distances of cars
m1_lm <- lm(dist ~ speed, data = cars)

compute and plot qqrplot
qqrplot(m1_lm)

#---
determinants for male satellites to nesting horseshoe crabs
data("CrabSatellites", package = "countreg")

linear poisson model
m1_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)
m2_pois <- glm(satellites ~ color, data = CrabSatellites, family = poisson)

compute and plot qqrplot as base graphic
q1 <- qqrplot(m1_pois, plot = FALSE)
q2 <- qqrplot(m2_pois, plot = FALSE)

plot combined qqrplot as "ggplot2" graphic
ggplot2::autoplot(c(q1, q2), single_graph = TRUE, col = c(1, 2), fill = c(1, 2))

Use different `scale`s with confidence intervals
qqrplot(m1_pois, scale = "uniform")
qqrplot(m1_pois, scale = "normal")
qqrplot(m1_pois, detrend = TRUE, scale = "uniform", confint = "line")
qqrplot(m1_pois, detrend = TRUE, scale = "normal", confint = "line")

https://doi.org/10.2307/1390802

reliagram 51

reliagram Reliagram (Extended Reliability Diagram)

Description

Reliagram (extended reliability diagram) assess the reliability of a fitted probabilistic distributional
forecast for a binary event. If plot = TRUE, the resulting object of class "reliagram" is plotted by
plot.reliagram or autoplot.reliagram before it is returned, depending on whether the package
ggplot2 is loaded.

Usage

reliagram(object, ...)

Default S3 method:
reliagram(
object,
newdata = NULL,
plot = TRUE,
class = NULL,
breaks = seq(0, 1, by = 0.1),
quantiles = 0.5,
thresholds = NULL,
confint = TRUE,
confint_level = 0.95,
confint_nboot = 250,
confint_seed = 1,
single_graph = FALSE,
xlab = "Forecast probability",
ylab = "Observed relative frequency",
main = NULL,
...

)

Arguments

object an object from which an extended reliability diagram can be extracted with
procast.

... further graphical parameters.

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

plot Should the plot or autoplot method be called to draw the computed extended
reliability diagram? Either set plot expicitly to "base" vs. "ggplot2" to
choose the type of plot, or for a logical plot argument it’s chosen conditional if
the package ggplot2 is loaded.

52 reliagram

class Should the invisible return value be either a data.frame or a tibble. Either
set class expicitly to "data.frame" vs. "tibble", or for NULL it’s chosen
automatically conditional if the package tibble is loaded.

breaks numeric vector passed on to cut in order to bin the observations and the pre-
dicted probabilities or a function applied to the predicted probabilities to cal-
culate a numeric value for cut. Typically quantiles to ensure equal number of
predictions per bin, e.g., by breaks = function(x) quantile(x).

quantiles numeric vector of quantile probabilities with values in [0,1] to calculate single
or several thresholds. Only used if thresholds is not specified. For binary
responses typically the 50%-quantile is used.

thresholds numeric vector specifying both where to cut the observations into binary values
and at which values the predicted probabilities should be calculated (procast).

confint logical. Should confident intervals be calculated and drawn?
confint_level numeric. The confidence level required.
confint_nboot numeric. The number of bootstrap steps.
confint_seed numeric. The seed to be set for the bootstrapping.
single_graph logical. Should all computed extended reliability diagrams be plotted in a single

graph?
xlab, ylab, main graphical parameters.

Details

Reliagrams evaluate if a probability model is calibrated (reliable) by first partitioning the predicted
probability for a binary event into a certain number of bins and then plotting (within each bin) the
averaged forecast probability against the observered/empirical relative frequency. For computation,
reliagram leverages the procast generic to forecast the respective predictive probabilities.

For continous probability forecasts, reliability diagrams can be computed either for a pre-specified
threshold or for a specific quantile probability of the response values. Per default, reliagrams are
computed for the 50%-quantile of the reponse.

In addition to the plot and autoplot method for reliagram objects, it is also possible to combine
two (or more) reliability diagrams by c/rbind, which creates a set of reliability diagrams that can
then be plotted in one go.

Value

An object of class "reliagram" inheriting from "data.frame" or "tibble" conditional on the
argument class with the following variables:

x forecast probabilities,
y observered/empirical relative frequencies,
bin_lwr, bin_upr

lower and upper bound of the binned forecast probabilities,
n_pred number of predictions within the binned forecasts probabilites,
ci_lwr, ci_upr lower and upper confidence interval bound.

Additionally, xlab, ylab, main, and treshold, confint_level, as well as the total and the de-
composed Brier Score (bs, rel, res, unc) are stored as attributes.

rootogram 53

Note

Note that there is also a reliability.plot function in the verification package. However, it
only works for numeric forecast probabilities and numeric observed relative frequencies, hence a
function has been created here.

References

Wilks DS (2011) Statistical Methods in the Atmospheric Sciences, 3rd ed., Academic Press, 704 pp.

See Also

link{plot.reliagram}, procast

Examples

speed and stopping distances of cars
m1_lm <- lm(dist ~ speed, data = cars)

compute and plot reliagram
reliagram(m1_lm)

#---
determinants for male satellites to nesting horseshoe crabs
data("CrabSatellites", package = "countreg")

linear poisson model
m1_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)
m2_pois <- glm(satellites ~ color, data = CrabSatellites, family = poisson)

compute and plot reliagram as base graphic
r1 <- reliagram(m1_pois, plot = FALSE)
r2 <- reliagram(m2_pois, plot = FALSE)

plot combined reliagram as "ggplot2" graphic
ggplot2::autoplot(c(r1, r2), single_graph = TRUE, col = c(1, 2), fill = c(1, 2))

rootogram Rootograms for Assessing Goodness of Fit of Probability Models

Description

Rootograms graphically compare (square roots) of empirical frequencies with expected (fitted) fre-
quencies from a probabilistic model. If plot = TRUE, the resulting object of class "rootogram" is
plotted by plot.rootogram or autoplot.rootogram before it is returned, depending on whether
the package ggplot2 is loaded.

54 rootogram

Usage

rootogram(object, ...)

Default S3 method:
rootogram(
object,
newdata = NULL,
plot = TRUE,
class = NULL,
breaks = NULL,
width = NULL,
style = c("hanging", "standing", "suspended"),
scale = c("sqrt", "raw"),
expected = TRUE,
confint = TRUE,
ref = TRUE,
xlab = NULL,
ylab = NULL,
main = NULL,
...

)

Arguments

object an object from which an rootogram can be extracted with procast.

... further graphical parameters passed to the plotting function.

newdata an optional data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

plot logical or character. Should the plot or autoplot method be called to draw the
computed extended reliability diagram? Logical FALSE will suppress plotting,
TRUE (default) will choose the type of plot conditional if the package ggplot2 is
loaded. Alternatively "base" or "ggplot2" can be specified to explicitly choose
the type of plot.

class should the invisible return value be either a data.frame or a tbl_df. Can be set
to "data.frame" or "tibble" to explicitly specify the return class, or to NULL
(default) in which case the return class is conditional on whether the package
"tibble" is loaded.

breaks NULL (default) or numeric vector to specifying the breaks for the rootogram in-
tervals. A single numeric (larger than 0) specifies the number of breaks to be
chosen via pretty (except for discrete distributions).

width NULL (default) or single positive numeric. Width of the histogram bars. Will be
ignored for non-discrete distributions.

style character specifying the syle of rootogram (see ’Details’).

scale character specifying whether "raw" frequencies or their square roots ("sqrt";
default) should be drawn.

rootogram 55

expected logical or character. Should the expected (fitted) frequencies be plotted? Can be
set to "both" (same as TRUE; default), "line", "point", or FALSE which will
suppress plotting.

confint logical, defaults to TRUE. Should confident intervals be drawn?

ref logical, defaults to TRUE. Should a reference line be plotted?

xlab, ylab, main graphical parameters forwarded to plot.rootogram or autoplot.rootogram.

Details

Rootograms graphically compare frequencies of empirical distributions and expected (fitted) prob-
ability models. For the observed distribution the histogram is drawn on a square root scale (hence
the name) and superimposed with a line for the expected frequencies. The histogram can be
"hanging" from the expected curve (default), "standing" on the (like bars in barplot), or drawn
as a "suspended" histogram of deviations.

Rootograms are associated with the work of John W. Tukey (see Tukey 1977) and were originally
proposed for assessing the goodness of fit of univariate distributions. See Friendly (2000) for a soft-
ware implementation, in particular geared towards count data models. Kleiber and Zeileis (2016)
extend it to regression models for count data, essentially by replacing the expected frequencies
of a univariate distribution by the sum of the expected frequencies from the different conditional
distributions for all observations.

The function rootogram leverages the procast generic in order to compute all necessary coordi-
nates based on observed and expected (fitted) frequencies. It is thus not only applicable to count
data regressions but to all (regression) models that are supported by procast.

In addition to the plot and autoplot method for rootogram objects, it is also possible to combine
two (or more) rootograms by c/rbind, which creates a set of rootograms that can then be plotted in
one go.

Value

An object of class "rootogram" inheriting from "data.frame" or "tibble" conditional on the
argument class with the following variables:

observed observed frequencies,

expected expected (fitted) frequencies,

mid histogram interval midpoints on the x-axis,

width widths of the histogram bars,
confint_lwr, confint_upr

lower and upper confidence interval bound.

Additionally, style, scale, expected, confint, ref, xlab, ylab, amd main are stored as at-
tributes.

Note

Note that there is also a rootogram function in the vcd package that is similar to the numeric
method provided here. However, it is much more limited in scope, hence a function has been
created here.

56 rootogram

References

Friendly M (2000), Visualizing Categorical Data. SAS Institute, Cary.

Kleiber C, Zeileis A (2016). “Visualizing Count Data Regressions Using Rootograms.” The Amer-
ican Statistician, 70(3), 296–303. doi:10.1080/00031305.2016.1173590

Tukey JW (1977). Exploratory Data Analysis. Addison-Wesley, Reading.

See Also

plot.rootogram, procast

Examples

plots and output

number of deaths by horsekicks in Prussian army (Von Bortkiewicz 1898)
deaths <- rep(0:4, c(109, 65, 22, 3, 1))

fit glm model
m1_pois <- glm(deaths ~ 1, family = poisson)
rootogram(m1_pois)

inspect output (without plotting)
r1 <- rootogram(m1_pois, plot = FALSE)
r1

combine plots
plot(c(r1, r1), col = c(1, 2), expected_col = c(1, 2))

#---
different styles

artificial data from negative binomial (mu = 3, theta = 2)
and Poisson (mu = 3) distribution
set.seed(1090)
y <- rnbinom(100, mu = 3, size = 2)
x <- rpois(100, lambda = 3)

glm method: fitted values via glm()
m2_pois <- glm(y ~ x, family = poisson)

correctly specified Poisson model fit
par(mfrow = c(1, 3))
r1 <- rootogram(m2_pois, style = "standing", ylim = c(-2.2, 4.8), main = "Standing")
r2 <- rootogram(m2_pois, style = "hanging", ylim = c(-2.2, 4.8), main = "Hanging")
r3 <- rootogram(m2_pois, style = "suspended", ylim = c(-2.2, 4.8), main = "Suspended")
par(mfrow = c(1, 1))

#---
linear regression with normal/Gaussian response: anorexia data

https://doi.org/10.1080/00031305.2016.1173590

SerumPotassium 57

data("anorexia", package = "MASS")

m3_gauss <- glm(Postwt ~ Prewt + Treat + offset(Prewt), family = gaussian, data = anorexia)

plot rootogram as "ggplot2" graphic
rootogram(m3_gauss, plot = "ggplot2")

SerumPotassium Serum Potassium Levels

Description

Sample of 152 serum potassium levels.

Usage

data("SerumPotassium", package = "topmodels")

Format

A numeric vector of 152 serum potassium levels.

Details

The data are taken from Rice (2007) who obtained the data from Martin, Gudzinowicz and Fanger
(1975) and reports them rounded to one digit.

Source

Page 350 in Rice (2007).

References

Rice JA (2007). Mathematical Statistics and Data Analysis, 3rd ed. Duxbury, Belmont, CA.

Martin HF, Gudzinowicz BJ, Fanger H (1975). Normal Values in Clinical Chemistry: A Guide to
Statistical Analysis of Laboratory Data. Marcel Dekker, New York.

Examples

library("topmodels")
data("SerumPotassium", package = "topmodels")

Figure 9.3a-c from Rice (2007), and actual hanging rootogram
(note that Rice erroneously refers to suspended rootograms as hanging)
sp <- lm(SerumPotassium ~ 1)
br <- 32:54/10 - 0.05
rootogram(sp, scale = "raw", style = "standing",

breaks = br, col = "transparent")
rootogram(sp, scale = "raw", style = "suspended",

58 stat_pithist

breaks = br, col = "transparent", ylim = c(2.8, -4))
rootogram(sp, scale = "sqrt", style = "suspended",

breaks = br, col = "transparent", ylim = c(1, -1.5))
rootogram(sp, breaks = br)

stat_pithist geom_* and stat_* for Producing PIT Histograms with ‘ggplot2‘

Description

Various geom_* and stat_* used within autoplot for producing PIT histograms.

Usage

stat_pithist(
mapping = NULL,
data = NULL,
geom = "pithist",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
freq = FALSE,
style = c("bar", "line"),
...

)

geom_pithist(
mapping = NULL,
data = NULL,
stat = "pithist",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
freq = FALSE,
style = c("bar", "line"),
...

)

stat_pithist_expected(
mapping = NULL,
data = NULL,
geom = "pithist_expected",
position = "identity",
na.rm = FALSE,
show.legend = NA,

stat_pithist 59

inherit.aes = TRUE,
scale = c("uniform", "normal"),
freq = FALSE,
...

)

geom_pithist_expected(
mapping = NULL,
data = NULL,
stat = "pithist_expected",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
scale = c("uniform", "normal"),
freq = FALSE,
...

)

stat_pithist_confint(
mapping = NULL,
data = NULL,
geom = "pithist_confint",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
scale = c("uniform", "normal"),
level = 0.95,
type = "approximation",
freq = FALSE,
style = c("polygon", "line"),
...

)

geom_pithist_confint(
mapping = NULL,
data = NULL,
stat = "pithist_confint",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
scale = c("uniform", "normal"),
level = 0.95,
type = "approximation",
freq = FALSE,
style = c("polygon", "line"),

60 stat_pithist

...
)

stat_pithist_simint(
mapping = NULL,
data = NULL,
geom = "pithist_simint",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
freq = FALSE,
...

)

geom_pithist_simint(
mapping = NULL,
data = NULL,
stat = "pithist_simint",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
freq = FALSE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.

stat_pithist 61

• A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

freq logical. If TRUE, the PIT histogram is represented by frequencies, the counts
component of the result; if FALSE, probability densities, component density,
are plotted (so that the histogram has a total area of one).

style character specifying the style of pithist. For style = "bar" a traditional PIT
hisogram is drawn, for style = "line" solely the upper border line is plotted.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.

62 stat_pithist

An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

scale On which scale should the PIT residuals be computed: on the probability scale
("uniform") or on the normal scale ("normal").

level numeric. The confidence level required.

type character. Which type of confidence interval should be plotted: ‘"exact"‘ or
‘"approximation"‘. According to Agresti and Coull (1998), for interval estima-
tion of binomial proportions an approximation can be better than exact.

Examples

if (require("ggplot2")) {
Fit model
data("CrabSatellites", package = "countreg")
m1_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)
m2_pois <- glm(satellites ~ color, data = CrabSatellites, family = poisson)

Compute pithist
p1 <- pithist(m1_pois, type = "random", plot = FALSE)
p2 <- pithist(m2_pois, type = "random", plot = FALSE)

d <- c(p1, p2)

Create factor
main <- attr(d, "main")
main <- make.names(main, unique = TRUE)
d$group <- factor(d$group, labels = main)

Plot bar style PIT histogram
gg1 <- ggplot(data = d) +
geom_pithist(aes(x = mid, y = observed, width = width, group = group), freq = TRUE) +
geom_pithist_simint(aes(x = mid, ymin = simint_lwr, ymax = simint_upr), freq = TRUE) +
geom_pithist_confint(aes(x = mid, y = observed, width = width), style = "line", freq = TRUE) +
geom_pithist_expected(aes(x = mid, y = observed, width = width), freq = TRUE) +
facet_grid(group ~ .) +
xlab("PIT") +

stat_rootogram 63

ylab("Frequency")
gg1

gg2 <- ggplot(data = d) +
geom_pithist(aes(x = mid, y = observed, width = width, group = group), freq = FALSE) +
geom_pithist_simint(aes(

x = mid, ymin = simint_lwr, ymax = simint_upr, y = observed,
width = width

), freq = FALSE) +
geom_pithist_confint(aes(x = mid, y = observed, width = width), style = "line", freq = FALSE) +
geom_pithist_expected(aes(x = mid, y = observed, width = width), freq = FALSE) +
facet_grid(group ~ .) +
xlab("PIT") +
ylab("Density")

gg2

Plot line style PIT histogram
gg3 <- ggplot(data = d) +
geom_pithist(aes(x = mid, y = observed, width = width, group = group), style = "line") +
geom_pithist_confint(aes(x = mid, y = observed, width = width), style = "polygon") +
facet_grid(group ~ .) +
xlab("PIT") +
ylab("Density")

gg3
}

stat_rootogram geom_* and stat_* for Producing Rootograms with ‘ggplot2‘

Description

Various geom_* and stat_* used within autoplot for producing rootograms.

Usage

stat_rootogram(
mapping = NULL,
data = NULL,
geom = "rootogram",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
scale = c("sqrt", "raw"),
style = c("hanging", "standing", "suspended"),
...

)

geom_rootogram(

64 stat_rootogram

mapping = NULL,
data = NULL,
stat = "rootogram",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
scale = c("sqrt", "raw"),
style = c("hanging", "standing", "suspended"),
...

)

stat_rootogram_expected(
mapping = NULL,
data = NULL,
geom = "rootogram_expected",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
scale = c("sqrt", "raw"),
...

)

geom_rootogram_expected(
mapping = NULL,
data = NULL,
stat = "rootogram_expected",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
scale = c("sqrt", "raw"),
linestyle = c("both", "line", "point"),
...

)

GeomRootogramExpected

geom_rootogram_ref(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

stat_rootogram 65

)

stat_rootogram_confint(
mapping = NULL,
data = NULL,
geom = "rootogram_confint",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
level = 0.95,
nrep = 1000,
type = c("tukey", "pointwise", "simultaneous"),
scale = c("sqrt", "raw"),
rootogram_style = c("hanging", "standing", "suspended"),
...

)

geom_rootogram_confint(
mapping = NULL,
data = NULL,
stat = "rootogram_confint",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
level = 0.95,
nrep = 1000,
type = c("tukey", "pointwise", "simultaneous"),
scale = c("sqrt", "raw"),
rootogram_style = c("hanging", "standing", "suspended"),
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

66 stat_rootogram

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

scale character specifying whether values should be transformed to the square root
scale (not checking for original scale, so maybe applied again).

style character specifying the syle of rootogram (see below).
... Other arguments passed on to layer()’s params argument. These arguments

broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

stat_rootogram 67

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

linestyle Character string defining one of ‘"both"‘, ‘"line"‘ or ‘"point"‘.

level numeric. The confidence level required.

nrep numeric. The repetition number of simulation for computing the confidence
intervals.

type character. Should "tukey", "pointwise", or "simultaneous" confidence in-
tervals be visualized?

rootogram_style

character specifying the syle of rootogram.

Format

An object of class GeomRootogramExpected (inherits from GeomPath, Geom, ggproto, gg) of length
3.

Examples

if (require("ggplot2")) {
Fit model
data("CrabSatellites", package = "countreg")
m1_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)
m2_pois <- glm(satellites ~ color, data = CrabSatellites, family = poisson)

Compute rootogram (on raw scale)
p1 <- rootogram(m1_pois, scale = "raw", plot = FALSE)
p2 <- rootogram(m2_pois, scale = "raw", plot = FALSE)

d <- c(p1, p2)

Get label names
main <- attr(d, "main")
main <- make.names(main, unique = TRUE)

68 topmodels

d$group <- factor(d$group, labels = main)

Plot rootograms w/ on default "sqrt" scale
gg1 <- ggplot(data = d) +

geom_rootogram(aes(
observed = observed, expected = expected, mid = mid,
width = width, group = group

)) +
geom_rootogram_expected(aes(expected = expected, mid = mid)) +
geom_rootogram_ref() +
facet_grid(group ~ .) +
xlab("satellites") +
ylab("sqrt(Frequency)")

gg1
}

topmodels Plotting Graphical Evaluation Tools for Probabilistic Models

Description

A quick overview plot with panels for all graphical evaluation methods provided for probabilistic
(regression) model objects. If plot = TRUE, the resulting objects are plotted by plot or autoplot
before they are returned within a single list, depending on whether the package ggplot2 is loaded.

Usage

topmodels(
object,
plot = TRUE,
class = NULL,
newdata = NULL,
na.action = na.pass,
which = NULL,
ask = dev.interactive(),
spar = TRUE,
single_page = NULL,
envir = parent.frame(),
...

)

Arguments

object An object supported by "procast".

plot Should the plot or autoplot method be called to draw all chosen plots? Either
set plot expicitly to "base" vs. "ggplot2" to choose the type of plot, or for a
logical plot argument it’s chosen conditional if the package ggplot2 is loaded.

topmodels 69

class Should the invisible return value be either a data.frame or a tibble. Either
set class expicitly to "data.frame" vs. "tibble", or for NULL it’s chosen
automatically conditional if the package tibble is loaded.

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

na.action function determining what should be done with missing values in newdata. The
default is to employ NA.

which Character or integer, selects the type of plot: "rootogram" graphically com-
pares (square roots) of empirical frequencies with fitted frequencies from a prob-
ability model, "pithist" compares empirical probabilities from fitted models
with a uniform distribution, "reliagram" shows a reliability diagram for as-
sessing the reliability of a fitted probabilistic distributional forecast, "qqrplot"
shows a quantile-quantile plot of quantile residuals, and "wormplot" shows a
worm plot using quantile resiudals.

ask For multiple plots, the user is asked to show the next plot. Argument is ignored
for ggplot2 style graphics.

spar Should graphical parameters be set? Will be ignored for ggplot2 style graphics.

single_page Logical. Should all plots be shown on a single page? Only choice for ggplot2
style graphics.

envir environment, default is parent.frame()

... Arguments to be passed to rootogram, pithist, reliagram, qqrplot, and
wormplot.

Details

Render the diagnostic graphics rootogram, pithist, reliagram qqrplot, and wormplot.

Value

A list containing the objects plotted conditional on the arguemnt which.

See Also

rootogram, pithist, reliagram qqrplot, wormplot

Examples

data("CrabSatellites", package = "countreg")
CrabSatellites2 <- CrabSatellites[CrabSatellites$satellites <= 1,]

m1 <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)
m2 <- glm(satellites ~ width + color, data = CrabSatellites2, family = binomial)

ggplot2 graphics
topmodels(m1, single_page = TRUE, nsim = 30, plot = "ggplot2")
topmodels(m2, single_page = TRUE, nsim = 30, plot = "ggplot2")

70 VolcanoHeights

VolcanoHeights Tukey’s Volcano Heights

Description

Heights of 218 volcanos taken from Tukey (1972).

Usage

data("VolcanoHeights", package = "topmodels")

Format

A numeric vector of 218 volcano heights (in 1000 feet).

Details

The data are taken from Tukey (1972) who obtained them from The World Almanac, 1966 (New
York: The New York World-Telegram and The Sun, 1966), pp. 282–283.

Source

Figure 1 in Tukey (1972).

References

Tukey JW (1972). “Some Graphic and Semigraphic Displays.” In Bancroft TA (ed.), Statistical
Papers in Honor of George W. Snedecor, pp. 293–316. Iowa State University Press, Ames, IA.
Reprinted in Cleveland WS (ed.): The Collected Works of John W. Tukey, Volume V. Graphics:
1965–1985, Wadsworth & Brooks/Cole, Pacific Grove, CA, 1988.

Examples

Rootograms from Tukey (1972)
(some 'breaks' don't match exactly)
library("topmodels")
data("VolcanoHeights", package = "topmodels")

Figure 16
rootogram(lm(VolcanoHeights ~ 1), style = "standing",

breaks = 0:20 - 0.01, expected = FALSE, confint = FALSE)

Figure 17
rootogram(lm(sqrt(1000 * VolcanoHeights) ~ 1), style = "standing",

breaks = 0:17 * 10 - 1.1, expected = FALSE, confint = FALSE)

Figure 18
rootogram(lm(sqrt(1000 * VolcanoHeights) ~ 1), style = "hanging",

breaks = -2:18 * 10 - 1.1, confint = FALSE)

wormplot 71

Figure 19
rootogram(lm(sqrt(1000 * VolcanoHeights) ~ 1), style = "suspended",

breaks = -2:18 * 10 - 1.1, ylim = c(6, -2), confint = FALSE)
abline(h = c(-1.5, -1, 1, 1.5), lty = c(2, 3, 3, 2))

wormplot Worm Plots for Quantile Residuals

Description

Visualize goodness of fit of regression models by worm plots using quantile residuals. If plot =
TRUE, the resulting object of class "wormplot" is plotted by plot.qqrplot or autoplot.qqrplot
before it is returned, depending on whether the package ggplot2 is loaded.

Usage

wormplot(object, ...)

Default S3 method:
wormplot(
object,
newdata = NULL,
plot = TRUE,
class = NULL,
detrend = TRUE,
scale = c("normal", "uniform"),
nsim = 1L,
delta = NULL,
confint = TRUE,
simint = TRUE,
simint_level = 0.95,
simint_nrep = 250,
single_graph = FALSE,
xlab = "Theoretical quantiles",
ylab = "Deviation",
main = NULL,
...

)

Arguments

object an object from which probability integral transforms can be extracted using the
generic function procast.

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

72 wormplot

plot Should the plot or autoplot method be called to draw the computed Q-Q plot?
Either set plot expicitly to "base" vs. "ggplot2" to choose the type of plot,
or for a logical plot argument it’s chosen conditional if the package ggplot2 is
loaded.

class Should the invisible return value be either a data.frame or a tibble. Either
set class expicitly to "data.frame" vs. "tibble", or for NULL it’s chosen
automatically conditional if the package tibble is loaded.

detrend logical. Should the qqrplot be detrended, i.e, plotted as a ‘wormplot()‘?

scale On which scale should the quantile residuals be shown: on the probability scale
("uniform") or on the normal scale ("normal").

nsim, delta arguments passed to proresiduals.

confint logical or character string describing the type for plotting ‘c("polygon", "line")‘.
If not set to ‘FALSE‘, the pointwise confidence interval of the (randomized)
quantile residuals are visualized.

simint logical. In case of discrete distributions, should the simulation (confidence)
interval due to the randomization be visualized?

simint_level numeric. The confidence level required for calculating the simulation (confi-
dence) interval due to the randomization.

simint_nrep numeric. The repetition number of simulated quantiles for calculating the simu-
lation (confidence) interval due to the randomization.

single_graph logical. Should all computed extended reliability diagrams be plotted in a single
graph?

xlab, ylab, main, ...
graphical parameters passed to plot.qqrplot or autoplot.qqrplot.

Details

Worm plots (de-trended Q-Q plots) draw deviations of quantile residuals (by default: transformed
to standard normal scale) and theoretical quantiles from the same distribution against the same
theoretical quantiles. For computation, wormplot leverages the function proresiduals employing
the procast.

Additional options are offered for models with discrete responses where randomization of quantiles
is needed.

In addition to the plot and autoplot method for wormplot objects, it is also possible to combine
two (or more) worm plots by c/rbind, which creates a set of worm plots that can then be plotted in
one go.

Value

An object of class "qqrplot" inheriting from "data.frame" or "tibble" conditional on the argu-
ment class with the following variables:

x theoretical quantiles,

y deviations between theoretical and empirical quantiles.

wormplot 73

In case of randomized residuals, nsim different x and y values, and lower and upper confidence
interval bounds (x_rg_lwr, y_rg_lwr, x_rg_upr, y_rg_upr) can optionally be returned. Addition-
ally, xlab, ylab, main, and simint_level, as well as the the (scale) and wether a detrended Q-Q
residuals plot was computed are stored as attributes.

References

van Buuren S and Fredriks M (2001). “Worm plot: simple diagnostic device for modelling growth
reference curves”. Statistics in Medicine, 20, 1259–1277. doi:10.1002/sim.746

See Also

qqrplot, plot.qqrplot, qqrplot, proresiduals, qqnorm

Examples

speed and stopping distances of cars
m1_lm <- lm(dist ~ speed, data = cars)

compute and plot wormplot
wormplot(m1_lm)

#---
determinants for male satellites to nesting horseshoe crabs
data("CrabSatellites", package = "countreg")

linear poisson model
m1_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)
m2_pois <- glm(satellites ~ color, data = CrabSatellites, family = poisson)

compute and plot wormplot as base graphic
w1 <- wormplot(m1_pois, plot = FALSE)
w2 <- wormplot(m2_pois, plot = FALSE)

plot combined wormplot as "ggplot2" graphic
ggplot2::autoplot(c(w1, w2), single_graph = TRUE, col = c(1, 2), fill = c(1, 2))

https://doi.org/10.1002/sim.746

Index

∗ Empirical distribution
Empirical, 6

∗ Normal distribution
Empirical, 6

∗ datasets
geom_qqrplot, 10
SerumPotassium, 57
stat_pithist, 58
stat_rootogram, 63
VolcanoHeights, 70

∗ distributions
Empirical, 6

∗ hplot
pithist, 17
plot.pithist, 20
plot.qqrplot, 25
plot.rootogram, 32
qqrplot, 48
rootogram, 53
wormplot, 71

∗ regression
newresponse, 15
procast, 37
promodel, 41
proresiduals, 42
proscore, 45
topmodels, 68

aes(), 12, 60, 65
apply_dpqr, 40
autoplot, 10, 19, 23, 28, 31, 35, 49, 52, 55,

58, 63, 68, 72
autoplot.pithist, 17, 19
autoplot.pithist (plot.pithist), 20
autoplot.qqrplot, 48, 49, 71, 72
autoplot.qqrplot (plot.qqrplot), 25
autoplot.reliagram, 51
autoplot.reliagram (plot.reliagram), 29
autoplot.rootogram, 53, 55
autoplot.rootogram (plot.rootogram), 32

Binomial, 3
binomial, 16
borders(), 13, 61, 66

c.pithist (pithist), 17
c.qqrplot (qqrplot), 48
c.reliagram (reliagram), 51
c.rootogram (rootogram), 53
cdf.Empirical (Empirical), 6
crps, 2, 47
crps.BAMLSS (crps.distribution), 2
crps.Bernoulli (crps.distribution), 2
crps.Beta (crps.distribution), 2
crps.Binomial (crps.distribution), 2
crps.distribution, 2
crps.Erlang (crps.distribution), 2
crps.Exponential (crps.distribution), 2
crps.GAMLSS (crps.distribution), 2
crps.Gamma (crps.distribution), 2
crps.Geometric (crps.distribution), 2
crps.GEV (crps.distribution), 2
crps.Gumbel (crps.distribution), 2
crps.HyperGeometric

(crps.distribution), 2
crps.Logistic (crps.distribution), 2
crps.LogNormal (crps.distribution), 2
crps.NegativeBinomial

(crps.distribution), 2
crps.Normal (crps.distribution), 2
crps.Poisson (crps.distribution), 2
crps.StudentsT (crps.distribution), 2
crps.Uniform (crps.distribution), 2
crps.XBetaX (crps.distribution), 2
crps_norm, 4
cut, 52

dempirical (Empirical), 6
deviance, 39

Empirical, 6

74

INDEX 75

fortify(), 12, 60, 65

geom_pithist (stat_pithist), 58
geom_pithist_confint (stat_pithist), 58
geom_pithist_expected (stat_pithist), 58
geom_pithist_simint (stat_pithist), 58
geom_qqrplot, 10
geom_qqrplot_confint (geom_qqrplot), 10
geom_qqrplot_ref (geom_qqrplot), 10
geom_qqrplot_simint (geom_qqrplot), 10
geom_rootogram (stat_rootogram), 63
geom_rootogram_confint

(stat_rootogram), 63
geom_rootogram_expected

(stat_rootogram), 63
geom_rootogram_ref (stat_rootogram), 63
GeomPithist (stat_pithist), 58
GeomPithistConfint (stat_pithist), 58
GeomPithistExpected (stat_pithist), 58
GeomPithistSimint (stat_pithist), 58
GeomQqrplot (geom_qqrplot), 10
GeomQqrplotConfint (geom_qqrplot), 10
GeomQqrplotRef (geom_qqrplot), 10
GeomQqrplotSimint (geom_qqrplot), 10
GeomRootogram (stat_rootogram), 63
GeomRootogramConfint (stat_rootogram),

63
GeomRootogramExpected (stat_rootogram),

63
GeomRootogramRef (stat_rootogram), 63
ggplot(), 12, 60, 65
glm, 16

hist, 19, 24

is_continuous, 4
is_discrete, 4

key glyphs, 13, 62, 67
kurtosis.Empirical (Empirical), 6

lapply, 4
layer geom, 13, 61, 66
layer position, 12, 61, 66
layer stat, 12, 62, 67
layer(), 13, 61, 62, 66, 67
lines, 23
lines.pithist (plot.pithist), 20
lines.reliagram (plot.reliagram), 29

log_pdf, 47
log_pdf.Empirical (Empirical), 6

mclapply, 4
mean.Empirical (Empirical), 6
model.frame, 16

na.pass, 16
newresponse, 15, 43, 45, 47
Normal, 3, 39

parLapply, 4
pdf, 40
pdf.Empirical (Empirical), 6
pempirical (Empirical), 6
pithist, 17, 19, 23, 24, 69
plot, 23, 27, 28, 31, 68
plot.pithist, 17–19, 20
plot.qqrplot, 25, 48–50, 71–73
plot.reliagram, 29, 51
plot.rootogram, 32, 53, 55, 56
points, 27, 28, 31
points.qqrplot, 28
points.qqrplot (plot.qqrplot), 25
predict, 16, 41, 42
predict.promodel (promodel), 41
pretty, 54
procast, 18, 19, 24, 31, 36, 37, 41, 42, 48, 49,

51–56, 71, 72
prodist, 38, 40, 43, 45, 47
promodel, 41
proresiduals, 16, 19, 28, 41, 42, 42, 49, 50,

72, 73
proscore, 16, 45

qempirical (Empirical), 6
qnorm, 44
qqnorm, 28, 50, 73
qqrplot, 27, 28, 44, 48, 49, 69, 73
quantile.Empirical (Empirical), 6
quasibinomial, 16

random.Empirical (Empirical), 6
rbind.pithist (pithist), 17
rbind.rootogram (rootogram), 53
reliagram, 51, 52, 69
rempirical (Empirical), 6
residuals, 41, 42
residuals.promodel (promodel), 41

76 INDEX

rootogram, 34, 36, 53, 55, 69

SerumPotassium, 57
skewness.Empirical (Empirical), 6
stat_pithist, 58
stat_pithist_confint (stat_pithist), 58
stat_pithist_expected (stat_pithist), 58
stat_pithist_simint (stat_pithist), 58
stat_qqrplot_confint (geom_qqrplot), 10
stat_qqrplot_ref (geom_qqrplot), 10
stat_qqrplot_simint (geom_qqrplot), 10
stat_rootogram, 63
stat_rootogram_confint

(stat_rootogram), 63
stat_rootogram_expected

(stat_rootogram), 63
StatPithist (stat_pithist), 58
StatPithistConfint (stat_pithist), 58
StatPithistExpected (stat_pithist), 58
StatPithistSimint (stat_pithist), 58
StatQqrplotConfint (geom_qqrplot), 10
StatQqrplotRef (geom_qqrplot), 10
StatQqrplotSimint (geom_qqrplot), 10
StatRootogram (stat_rootogram), 63
StatRootogramConfint (stat_rootogram),

63
StatRootogramExpected (stat_rootogram),

63
support.Empirical (Empirical), 6

terms, 16
theme_bw, 23, 27, 35
topmodels, 68

variance.Empirical (Empirical), 6
VolcanoHeights, 70

wormplot, 13, 28, 49, 50, 69, 71, 72

	crps.distribution
	Empirical
	geom_qqrplot
	newresponse
	pithist
	plot.pithist
	plot.qqrplot
	plot.reliagram
	plot.rootogram
	procast
	promodel
	proresiduals
	proscore
	qqrplot
	reliagram
	rootogram
	SerumPotassium
	stat_pithist
	stat_rootogram
	topmodels
	VolcanoHeights
	wormplot
	Index

