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cforest Conditional Random Forests

Description

An implementation of the random forest and bagging ensemble algorithms utilizing conditional
inference trees as base learners.

Usage

cforest(formula, data, weights, subset, offset, cluster, strata,
na.action = na.pass,

control = ctree_control(teststat = "quad", testtype = "Univ",
mincriterion = 0, saveinfo = FALSE, ...),

ytrafo = NULL, scores = NULL, ntree = 500L,
perturb = list(replace = FALSE, fraction = 0.632),
mtry = ceiling(sqrt(nvar)), applyfun = NULL, cores = NULL,
trace = FALSE, ...)
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## S3 method for class 'cforest'
predict(object, newdata = NULL,

type = c("response", "prob", "weights", "node"),
OOB = FALSE, FUN = NULL, simplify = TRUE, scale = TRUE, ...)

## S3 method for class 'cforest'
gettree(object, tree = 1L, ...)

Arguments

formula a symbolic description of the model to be fit.

data a data frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process. Non-negative
integer valued weights are allowed as well as non-negative real weights. Ob-
servations are sampled (with or without replacement) according to probabilities
weights / sum(weights). The fraction of observations to be sampled (without
replacement) is computed based on the sum of the weights if all weights are
integer-valued and based on the number of weights greater zero else. Alterna-
tively, weights can be a double matrix defining case weights for all ncol(weights)
trees in the forest directly. This requires more storage but gives the user more
control.

offset an optional vector of offset values.

cluster an optional factor indicating independent clusters. Highly experimental, use at
your own risk.

strata an optional factor for stratified sampling.

na.action a function which indicates what should happen when the data contain missing
value.

control a list with control parameters, see ctree_control. The default values corre-
spond to those of the default values used by cforest from the party package.
saveinfo = FALSE leads to less memory hungry representations of trees. Note
that arguments mtry, cores and applyfun in ctree_control are ignored for
cforest, because they are already set.

ytrafo an optional named list of functions to be applied to the response variable(s) be-
fore testing their association with the explanatory variables. Note that this trans-
formation is only performed once for the root node and does not take weights
into account (which means, the forest bootstrap or subsetting is ignored, which
is almost certainly not a good idea). Alternatively, ytrafo can be a function
of data and weights. In this case, the transformation is computed for every
node and the corresponding weights. This feature is experimental and the user
interface likely to change.

scores an optional named list of scores to be attached to ordered factors.

ntree Number of trees to grow for the forest.

perturb a list with arguments replace and fraction determining which type of resam-
pling with replace = TRUE referring to the n-out-of-n bootstrap and replace
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= FALSE to sample splitting. fraction is the portion of observations to draw
without replacement. Honesty (experimental): If fraction has two elements,
the first fraction defines the portion of observations to be used for tree induction,
the second fraction defines the portion of observations used for parameter esti-
mation. The sum of both fractions can be smaller than one but most not exceed
one. Details can be found in Section 2.4 of Wager and Athey (2018).

mtry number of input variables randomly sampled as candidates at each node for ran-
dom forest like algorithms. Bagging, as special case of a random forest without
random input variable sampling, can be performed by setting mtry either equal
to Inf or manually equal to the number of input variables.

applyfun an optional lapply-style function with arguments function(X, FUN, ...). It
is used for computing the variable selection criterion. The default is to use the
basic lapply function unless the cores argument is specified (see below).

cores numeric. If set to an integer the applyfun is set to mclapply with the desired
number of cores.

trace a logical indicating if a progress bar shall be printed while the forest grows.

object An object as returned by cforest

newdata An optional data frame containing test data.

type a character string denoting the type of predicted value returned, ignored when
argument FUN is given. For "response", the mean of a numeric response, the
predicted class for a categorical response or the median survival time for a cen-
sored response is returned. For "prob" the matrix of conditional class prob-
abilities (simplify = TRUE) or a list with the conditional class probabilities for
each observation (simplify = FALSE) is returned for a categorical response. For
numeric and censored responses, a list with the empirical cumulative distribu-
tion functions and empirical survivor functions (Kaplan-Meier estimate) is re-
turned when type = "prob". "weights" returns an integer vector of prediction
weights. For type = "where", a list of terminal node ids for each of the trees in
the forest ist returned.

OOB a logical defining out-of-bag predictions (only if newdata = NULL). If the forest
was fitted with honesty, this option is ignored.

FUN a function to compute summary statistics. Predictions for each node have to be
computed based on arguments (y, w) where y is the response and w are case
weights.

simplify a logical indicating whether the resulting list of predictions should be converted
to a suitable vector or matrix (if possible).

scale a logical indicating scaling of the nearest neighbor weights by the sum of weights
in the corresponding terminal node of each tree. In the simple regression forest,
predicting the conditional mean by nearest neighbor weights will be equivalent
to (but slower!) the aggregation of means.

tree an integer, the number of the tree to extract from the forest.

... additional arguments.
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Details

This implementation of the random forest (and bagging) algorithm differs from the reference im-
plementation in randomForest with respect to the base learners used and the aggregation scheme
applied.

Conditional inference trees, see ctree, are fitted to each of the ntree perturbed samples of the
learning sample. Most of the hyper parameters in ctree_control regulate the construction of the
conditional inference trees.

Hyper parameters you might want to change are:

1. The number of randomly preselected variables mtry, which is fixed to the square root of the
number of input variables.

2. The number of trees ntree. Use more trees if you have more variables.

3. The depth of the trees, regulated by mincriterion. Usually unstopped and unpruned trees are
used in random forests. To grow large trees, set mincriterion to a small value.

The aggregation scheme works by averaging observation weights extracted from each of the ntree
trees and NOT by averaging predictions directly as in randomForest. See Hothorn et al. (2004)
and Meinshausen (2006) for a description.

Predictions can be computed using predict. For observations with zero weights, predictions are
computed from the fitted tree when newdata = NULL.

Ensembles of conditional inference trees have not yet been extensively tested, so this routine is
meant for the expert user only and its current state is rather experimental. However, there are
some things available in cforest that can’t be done with randomForest, for example fitting forests
to censored response variables (see Hothorn et al., 2004, 2006a) or to multivariate and ordered
responses. Using the rich partykit infrastructure allows additional functionality in cforest, such
as parallel tree growing and probabilistic forecasting (for example via quantile regression forests).
Also plotting of single trees from a forest is much easier now.

Unlike cforest, cforest is entirely written in R which makes customisation much easier at the
price of longer computing times. However, trees can be grown in parallel with this R only imple-
mention which renders speed less of an issue. Note that the default values are different from those
used in package party, most importantly the default for mtry is now data-dependent. predict(,
type = "node") replaces the where function and predict(, type = "prob") the treeresponse
function.

Moreover, when predictors vary in their scale of measurement of number of categories, variable
selection and computation of variable importance is biased in favor of variables with many potential
cutpoints in randomForest, while in cforest unbiased trees and an adequate resampling scheme
are used by default. See Hothorn et al. (2006b) and Strobl et al. (2007) as well as Strobl et al.
(2009).

Value

An object of class cforest.

References

Breiman L (2001). Random Forests. Machine Learning, 45(1), 5–32.
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Hothorn T, Lausen B, Benner A, Radespiel-Troeger M (2004). Bagging Survival Trees. Statistics
in Medicine, 23(1), 77–91.

Hothorn T, Buehlmann P, Dudoit S, Molinaro A, Van der Laan MJ (2006a). Survival Ensembles.
Biostatistics, 7(3), 355–373.

Hothorn T, Hornik K, Zeileis A (2006b). Unbiased Recursive Partitioning: A Conditional Inference
Framework. Journal of Computational and Graphical Statistics, 15(3), 651–674.

Hothorn T, Zeileis A (2015). partykit: A Modular Toolkit for Recursive Partytioning in R. Journal
of Machine Learning Research, 16, 3905–3909.

Meinshausen N (2006). Quantile Regression Forests. Journal of Machine Learning Research, 7,
983–999.

Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007). Bias in Random Forest Variable Importance
Measures: Illustrations, Sources and a Solution. BMC Bioinformatics, 8, 25. doi:10.1186/1471-
2105825

Strobl C, Malley J, Tutz G (2009). An Introduction to Recursive Partitioning: Rationale, Appli-
cation, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests.
Psychological Methods, 14(4), 323–348.

Stefan Wager & Susan Athey (2018). Estimation and Inference of Heterogeneous Treatment Effects
using Random Forests. Journal of the American Statistical Association, 113(523), 1228–1242.
doi:10.1080/01621459.2017.1319839

Examples

## basic example: conditional inference forest for cars data
cf <- cforest(dist ~ speed, data = cars)

## prediction of fitted mean and visualization
nd <- data.frame(speed = 4:25)
nd$mean <- predict(cf, newdata = nd, type = "response")
plot(dist ~ speed, data = cars)
lines(mean ~ speed, data = nd)

## predict quantiles (aka quantile regression forest)
## Note that this works for integer-valued weight w
## Other weights require weighted quantiles, see for example
## Hmisc::wtd.quantile(
myquantile <- function(y, w) quantile(rep(y, w), probs = c(0.1, 0.5, 0.9))
p <- predict(cf, newdata = nd, type = "response", FUN = myquantile)
colnames(p) <- c("lower", "median", "upper")
nd <- cbind(nd, p)

## visualization with conditional (on speed) prediction intervals
plot(dist ~ speed, data = cars, type = "n")
with(nd, polygon(c(speed, rev(speed)), c(lower, rev(upper)),

col = "lightgray", border = "transparent"))
points(dist ~ speed, data = cars)
lines(mean ~ speed, data = nd, lwd = 1.5)
lines(median ~ speed, data = nd, lty = 2, lwd = 1.5)
legend("topleft", c("mean", "median", "10% - 90% quantile"),

lwd = c(1.5, 1.5, 10), lty = c(1, 2, 1),

https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1080/01621459.2017.1319839
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col = c("black", "black", "lightgray"), bty = "n")

## Not run:

### honest (i.e., out-of-bag) cross-classification of
### true vs. predicted classes
data("mammoexp", package = "TH.data")
table(mammoexp$ME, predict(cforest(ME ~ ., data = mammoexp, ntree = 50),

OOB = TRUE, type = "response"))

### fit forest to censored response
if (require("TH.data") && require("survival")) {

data("GBSG2", package = "TH.data")
bst <- cforest(Surv(time, cens) ~ ., data = GBSG2, ntree = 50)

### estimate conditional Kaplan-Meier curves
print(predict(bst, newdata = GBSG2[1:2,], OOB = TRUE, type = "prob"))

print(gettree(bst))
}

## End(Not run)

ctree Conditional Inference Trees

Description

Recursive partitioning for continuous, censored, ordered, nominal and multivariate response vari-
ables in a conditional inference framework.

Usage

ctree(formula, data, subset, weights, na.action = na.pass, offset, cluster,
control = ctree_control(...), ytrafo = NULL,
converged = NULL, scores = NULL, doFit = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit.

data a data frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process. Only non-negative
integer valued weights are allowed.

offset an optional vector of offset values.
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cluster an optional factor indicating independent clusters. Highly experimental, use at
your own risk.

na.action a function which indicates what should happen when the data contain missing
value.

control a list with control parameters, see ctree_control.

ytrafo an optional named list of functions to be applied to the response variable(s) be-
fore testing their association with the explanatory variables. Note that this trans-
formation is only performed once for the root node and does not take weights
into account. Alternatively, ytrafo can be a function of data and weights.
In this case, the transformation is computed for every node with corresponding
weights. This feature is experimental and the user interface likely to change.

converged an optional function for checking user-defined criteria before splits are imple-
mented. This is not to be used and very likely to change.

scores an optional named list of scores to be attached to ordered factors.

doFit a logical, if FALSE, the tree is not fitted.

... arguments passed to ctree_control.

Details

Function partykit::ctree is a reimplementation of (most of) party::ctree employing the new
party infrastructure of the partykit infrastructure. The vignette vignette("ctree", package =
"partykit") explains internals of the different implementations.

Conditional inference trees estimate a regression relationship by binary recursive partitioning in a
conditional inference framework. Roughly, the algorithm works as follows: 1) Test the global null
hypothesis of independence between any of the input variables and the response (which may be
multivariate as well). Stop if this hypothesis cannot be rejected. Otherwise select the input variable
with strongest association to the response. This association is measured by a p-value corresponding
to a test for the partial null hypothesis of a single input variable and the response. 2) Implement a
binary split in the selected input variable. 3) Recursively repeate steps 1) and 2).

The implementation utilizes a unified framework for conditional inference, or permutation tests,
developed by Strasser and Weber (1999). The stop criterion in step 1) is either based on multiplic-
ity adjusted p-values (testtype = "Bonferroni" in ctree_control) or on the univariate p-values
(testtype = "Univariate"). In both cases, the criterion is maximized, i.e., 1 - p-value is used.
A split is implemented when the criterion exceeds the value given by mincriterion as specified
in ctree_control. For example, when mincriterion = 0.95, the p-value must be smaller than
$0.05$ in order to split this node. This statistical approach ensures that the right-sized tree is
grown without additional (post-)pruning or cross-validation. The level of mincriterion can ei-
ther be specified to be appropriate for the size of the data set (and 0.95 is typically appropriate
for small to moderately-sized data sets) or could potentially be treated like a hyperparameter (see
Section~3.4 in Hothorn, Hornik and Zeileis, 2006). The selection of the input variable to split in
is based on the univariate p-values avoiding a variable selection bias towards input variables with
many possible cutpoints. The test statistics in each of the nodes can be extracted with the sctest
method. (Note that the generic is in the strucchange package so this either needs to be loaded or
sctest.constparty has to be called directly.) In cases where splitting stops due to the sample size
(e.g., minsplit or minbucket etc.), the test results may be empty.
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Predictions can be computed using predict, which returns predicted means, predicted classes or
median predicted survival times and more information about the conditional distribution of the
response, i.e., class probabilities or predicted Kaplan-Meier curves. For observations with zero
weights, predictions are computed from the fitted tree when newdata = NULL.

By default, the scores for each ordinal factor x are 1:length(x), this may be changed for variables
in the formula using scores = list(x = c(1, 5, 6)), for example.

For a general description of the methodology see Hothorn, Hornik and Zeileis (2006) and Hothorn,
Hornik, van de Wiel and Zeileis (2006).

Value

An object of class party.

References

Hothorn T, Hornik K, Van de Wiel MA, Zeileis A (2006). A Lego System for Conditional Inference.
The American Statistician, 60(3), 257–263.

Hothorn T, Hornik K, Zeileis A (2006). Unbiased Recursive Partitioning: A Conditional Inference
Framework. Journal of Computational and Graphical Statistics, 15(3), 651–674.

Hothorn T, Zeileis A (2015). partykit: A Modular Toolkit for Recursive Partytioning in R. Journal
of Machine Learning Research, 16, 3905–3909.

Strasser H, Weber C (1999). On the Asymptotic Theory of Permutation Statistics. Mathematical
Methods of Statistics, 8, 220–250.

Examples

### regression
airq <- subset(airquality, !is.na(Ozone))
airct <- ctree(Ozone ~ ., data = airq)
airct
plot(airct)
mean((airq$Ozone - predict(airct))^2)

### classification
irisct <- ctree(Species ~ .,data = iris)
irisct
plot(irisct)
table(predict(irisct), iris$Species)

### estimated class probabilities, a list
tr <- predict(irisct, newdata = iris[1:10,], type = "prob")

### survival analysis
if (require("TH.data") && require("survival") &&

require("coin") && require("Formula")) {

data("GBSG2", package = "TH.data")
(GBSG2ct <- ctree(Surv(time, cens) ~ ., data = GBSG2))
predict(GBSG2ct, newdata = GBSG2[1:2,], type = "response")
plot(GBSG2ct)
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### with weight-dependent log-rank scores
### log-rank trafo for observations in this node only (= weights > 0)
h <- function(y, x, start = NULL, weights, offset, estfun = TRUE, object = FALSE, ...) {

if (is.null(weights)) weights <- rep(1, NROW(y))
s <- logrank_trafo(y[weights > 0,,drop = FALSE])
r <- rep(0, length(weights))
r[weights > 0] <- s
list(estfun = matrix(as.double(r), ncol = 1), converged = TRUE)

}

### very much the same tree
(ctree(Surv(time, cens) ~ ., data = GBSG2, ytrafo = h))

}

### multivariate responses
airct2 <- ctree(Ozone + Temp ~ ., data = airq)
airct2
plot(airct2)

ctree_control Control for Conditional Inference Trees

Description

Various parameters that control aspects of the ‘ctree’ fit.

Usage

ctree_control(teststat = c("quadratic", "maximum"),
splitstat = c("quadratic", "maximum"),
splittest = FALSE,
testtype = c("Bonferroni", "MonteCarlo", "Univariate", "Teststatistic"),
pargs = GenzBretz(),
nmax = c(yx = Inf, z = Inf), alpha = 0.05, mincriterion = 1 - alpha,
logmincriterion = log(mincriterion), minsplit = 20L, minbucket = 7L,
minprob = 0.01, stump = FALSE, maxvar = Inf, lookahead = FALSE,
MIA = FALSE, nresample = 9999L,
tol = sqrt(.Machine$double.eps),maxsurrogate = 0L, numsurrogate = FALSE,
mtry = Inf, maxdepth = Inf,
multiway = FALSE, splittry = 2L, intersplit = FALSE, majority = FALSE,
caseweights = TRUE, applyfun = NULL, cores = NULL, saveinfo = TRUE,
update = NULL, splitflavour = c("ctree", "exhaustive"))

Arguments

teststat a character specifying the type of the test statistic to be applied for variable
selection.
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splitstat a character specifying the type of the test statistic to be applied for splitpoint
selection. Prior to version 1.2-0, maximum was implemented only.

splittest a logical changing linear (the default FALSE) to maximally selected statistics for
variable selection. Currently needs testtype = "MonteCarlo".

testtype a character specifying how to compute the distribution of the test statistic. The
first three options refer to p-values as criterion, Teststatistic uses the raw
statistic as criterion. Bonferroni and Univariate relate to p-values from the
asymptotic distribution (adjusted or unadjusted). Bonferroni-adjusted Monte-
Carlo p-values are computed when both Bonferroni and MonteCarlo are given.

pargs control parameters for the computation of multivariate normal probabilities, see
GenzBretz.

nmax an integer of length two defining the number of bins each variable (in the re-
sponse yx and the partitioning variables z)) and is divided into prior to tree
building. The default Inf does not apply any binning. Highly experimental, use
at your own risk.

alpha a double, the significance level for variable selection.

mincriterion the value of the test statistic or 1 - p-value that must be exceeded in order to
implement a split.

logmincriterion

the value of the test statistic or 1 - p-value that must be exceeded in order to
implement a split on the log-scale.

minsplit the minimum sum of weights in a node in order to be considered for splitting.

minbucket the minimum sum of weights in a terminal node.

minprob proportion of observations needed to establish a terminal node.

stump a logical determining whether a stump (a tree with a maximum of three nodes
only) is to be computed.

maxvar maximum number of variables the tree is allowed to split in.

lookahead a logical determining whether a split is implemented only after checking if tests
in both daughter nodes can be performed.

MIA a logical determining the treatment of NA as a category in split, see Twala et al.
(2008).

nresample number of permutations for testtype = "MonteCarlo".

tol tolerance for zero variances.

maxsurrogate number of surrogate splits to evaluate.

numsurrogate a logical for backward-compatibility with party. If TRUE, only at least ordered
variables are considered for surrogate splits.

mtry number of input variables randomly sampled as candidates at each node for
random forest like algorithms. The default mtry = Inf means that no random
selection takes place. If ctree_control is used in cforest this argument is
ignored.

maxdepth maximum depth of the tree. The default maxdepth = Inf means that no restric-
tions are applied to tree sizes.
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multiway a logical indicating if multiway splits for all factor levels are implemented for
unordered factors.

splittry number of variables that are inspected for admissible splits if the best split
doesn’t meet the sample size constraints.

intersplit a logical indicating if splits in numeric variables are simply x <= a (the default)
or interpolated x <= (a + b) / 2. The latter feature is experimental, see Galili
and Meilijson (2016).

majority if FALSE (the default), observations which can’t be classified to a daughter node
because of missing information are randomly assigned (following the node dis-
tribution). If TRUE, they go with the majority (the default in the first implemen-
tation ctree) in package party.

caseweights a logical interpreting weights as case weights.

applyfun an optional lapply-style function with arguments function(X, FUN, ...). It
is used for computing the variable selection criterion. The default is to use the
basic lapply function unless the cores argument is specified (see below). If
ctree_control is used in cforest this argument is ignored.

cores numeric. If set to an integer the applyfun is set to mclapply with the desired
number of cores. If ctree_control is used in cforest this argument is ig-
nored.

saveinfo logical. Store information about variable selection procedure in info slot of
each partynode.

update logical. If TRUE, the data transformation is updated in every node. The default
always was and still is not to update unless ytrafo is a function.

splitflavour use exhaustive search over splits instead of maximally selected statistics (ctree).
This feature may change.

Details

The arguments teststat, testtype and mincriterion determine how the global null hypothesis
of independence between all input variables and the response is tested (see ctree). The variable
with most extreme p-value or test statistic is selected for splitting. If this isn’t possible due to sample
size constraints explained in the next paragraph, up to splittry other variables are inspected for
possible splits.

A split is established when all of the following criteria are met: 1) the sum of the weights in the
current node is larger than minsplit, 2) a fraction of the sum of weights of more than minprob
will be contained in all daughter nodes, 3) the sum of the weights in all daughter nodes exceeds
minbucket, and 4) the depth of the tree is smaller than maxdepth. This avoids pathological splits
deep down the tree. When stump = TRUE, a tree with at most two terminal nodes is computed.

The argument mtry > 0 means that a random forest like ‘variable selection’, i.e., a random selection
of mtry input variables, is performed in each node.

In each inner node, maxsurrogate surrogate splits are computed (regardless of any missing values
in the learning sample). Factors in test samples whose levels were empty in the learning sample
are treated as missing when computing predictions (in contrast to ctree. Note also the different
behaviour of majority in the two implementations.
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Value

A list.

References

B. E. T. H. Twala, M. C. Jones, and D. J. Hand (2008), Good Methods for Coping with Missing
Data in Decision Trees, Pattern Recognition Letters, 29(7), 950–956.

Tal Galili, Isaac Meilijson (2016), Splitting Matters: How Monotone Transformation of Predictor
Variables May Improve the Predictions of Decision Tree Models, https://arxiv.org/abs/1611.
04561.

extree_data Data Preprocessing for Extensible Trees.

Description

A routine for preprocessing data before an extensible tree can be grown by extree_fit.

Usage

extree_data(formula, data, subset, na.action = na.pass, weights, offset,
cluster, strata, scores = NULL, yx = c("none", "matrix"),
ytype = c("vector", "data.frame", "matrix"),
nmax = c(yx = Inf, z = Inf), ...)

Arguments

formula a formula describing the model of the form y1 + y2 + ... ~ x1 + x2 + ... | z1
+ z2 + ....

data an optional data.frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain missing
values.

weights an optional vector of weights.

offset an optional offset vector.

cluster an optional factor describing clusters. The interpretation depends on the specific
tree algorithm.

strata an optional factor describing strata. The interpretation depends on the specific
tree algorithm.

scores an optional named list of numeric scores to be assigned to ordered factors in the
z part of the formula.

yx a character indicating if design matrices shall be computed.

https://arxiv.org/abs/1611.04561
https://arxiv.org/abs/1611.04561
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ytype a character indicating how response variables shall be stored.
nmax a numeric vector of length two with the maximal number of bins in the response

and x-part (first element) and the z part. Use Inf to switch-off binning.
... additional arguments.

Details

This internal functionality will be the basis of implementations of other tree algorithms in future
versions. Currently, only ctree relies on this function.

Value

An object of class extree_data.

Examples

data("iris")

ed <- extree_data(Species ~ Sepal.Width + Sepal.Length | Petal.Width + Petal.Length,
data = iris, nmax = c("yx" = 25, "z" = 10), yx = "matrix")

### the model.frame
mf <- model.frame(ed)
all.equal(mf, iris[, names(mf)])

### binned y ~ x part
model.frame(ed, yxonly = TRUE)

### binned Petal.Width
ed[[4, type = "index"]]

### response
ed$yx$y

### model matrix
ed$yx$x

extree_fit Fit Extensible Trees.

Description

Basic infrastructure for fitting extensible trees.

Usage

extree_fit(data, trafo, converged, selectfun = ctrl$selectfun, splitfun = ctrl$splitfun,
svselectfun = ctrl$svselectfun, svsplitfun = ctrl$svsplitfun, partyvars,

subset, weights, ctrl, doFit = TRUE)
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Arguments

data an object of class extree_data, see extree_data.

trafo a function with arguments subset, weights, info, estfun and object.

converged a function with arguments subset, weights.

selectfun an optional function for selecting variables.

splitfun an optional function for selecting splits.

svselectfun an optional function for selecting surrogate variables.

svsplitfun an optional function for selecting surrogate splits.

partyvars a numeric vector assigning a weight to each partitioning variable (z in extree_data.

subset a sorted integer vector describing a subset.

weights an optional vector of weights.

ctrl control arguments.

doFit a logical indicating if the tree shall be grown (TRUE) or not FALSE.

Details

This internal functionality will be the basis of implementations of other tree algorithms in future
versions. Currently, only ctree relies on this function.

Value

An object of class partynode.

glmtree Generalized Linear Model Trees

Description

Model-based recursive partitioning based on generalized linear models.

Usage

glmtree(formula, data, subset, na.action, weights, offset, cluster,
family = gaussian, epsilon = 1e-8, maxit = 25, method = "glm.fit", ...)

Arguments

formula symbolic description of the model (of type y ~ z1 + ... + zl or y ~ x1 + ... +
xk | z1 + ... + zl; for details see below).

data, subset, na.action
arguments controlling formula processing via model.frame.

weights optional numeric vector of weights. By default these are treated as case weights
but the default can be changed in mob_control.
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offset optional numeric vector with an a priori known component to be included in the
model y ~ x1 + ... + xk (i.e., only when x variables are specified).

cluster optional vector (typically numeric or factor) with a cluster ID to be employed
for clustered covariances in the parameter stability tests.

family, method specification of a family and fitting method for glm.

epsilon, maxit control parameters passed to glm.control.

... optional control parameters passed to mob_control.

Details

Convenience interface for fitting MOBs (model-based recursive partitions) via the mob function.
glmtree internally sets up a model fit function for mob, using glm.fit. Then mob is called using
the negative log-likelihood as the objective function.

Compared to calling mob by hand, the implementation tries to avoid unnecessary computations
while growing the tree. Also, it provides a more elaborate plotting function.

Value

An object of class glmtree inheriting from modelparty. The info element of the overall party
and the individual nodes contain various informations about the models.

References

Zeileis A, Hothorn T, Hornik K (2008). Model-Based Recursive Partitioning. Journal of Computa-
tional and Graphical Statistics, 17(2), 492–514.

See Also

mob, mob_control, lmtree

Examples

if(require("mlbench")) {

## Pima Indians diabetes data
data("PimaIndiansDiabetes", package = "mlbench")

## recursive partitioning of a logistic regression model
pid_tree2 <- glmtree(diabetes ~ glucose | pregnant +

pressure + triceps + insulin + mass + pedigree + age,
data = PimaIndiansDiabetes, family = binomial)

## printing whole tree or individual nodes
print(pid_tree2)
print(pid_tree2, node = 1)

## visualization
plot(pid_tree2)
plot(pid_tree2, tp_args = list(cdplot = TRUE))
plot(pid_tree2, terminal_panel = NULL)
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## estimated parameters
coef(pid_tree2)
coef(pid_tree2, node = 5)
summary(pid_tree2, node = 5)

## deviance, log-likelihood and information criteria
deviance(pid_tree2)
logLik(pid_tree2)
AIC(pid_tree2)
BIC(pid_tree2)

## different types of predictions
pid <- head(PimaIndiansDiabetes)
predict(pid_tree2, newdata = pid, type = "node")
predict(pid_tree2, newdata = pid, type = "response")
predict(pid_tree2, newdata = pid, type = "link")

}

HuntingSpiders Abundance of Hunting Spiders

Description

Abundances for 12 species of hunting spiders along with environmental predictors, all rated on a
0–9 scale.

Usage

data("HuntingSpiders")

Format

A data frame containing 28 observations on 18 variables (12 species abundances and 6 environmen-
tal predictors).

arct.lute numeric. Abundance of species Arctosa lutetiana (on a scale 0–9).

pard.lugu numeric. Abundance of species Pardosa lugubris (on a scale 0–9).

zora.spin numeric. Abundance of species Zora spinimana (on a scale 0–9).

pard.nigr numeric. Abundance of species Pardosa nigriceps (on a scale 0–9).

pard.pull numeric. Abundance of species Pardosa pullata (on a scale 0–9).

aulo.albi numeric. Abundance of species Aulonia albimana (on a scale 0–9).

troc.terr numeric. Abundance of species Trochosa terricola (on a scale 0–9).

alop.cune numeric. Abundance of species Alopecosa cuneata (on a scale 0–9).

pard.mont numeric. Abundance of species Pardosa monticola (on a scale 0–9).
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alop.acce numeric. Abundance of species Alopecosa accentuata (on a scale 0–9).

alop.fabr numeric. Abundance of species Alopecosa fabrilis (on a scale 0–9).

arct.peri numeric. Abundance of species Arctosa perita (on a scale 0–9).

water numeric. Environmental predictor on a scale 0–9.

sand numeric. Environmental predictor on a scale 0–9.

moss numeric. Environmental predictor on a scale 0–9.

reft numeric. Environmental predictor on a scale 0–9.

twigs numeric. Environmental predictor on a scale 0–9.

herbs numeric. Environmental predictor on a scale 0–9.

Details

The data were originally analyzed by Van der Aart and Smeenk-Enserink (1975). De’ath (2002)
transformed all variables to the 0–9 scale and employed multivariate regression trees.

Source

Package mvpart (currently archived, see https://CRAN.R-project.org/package=mvpart).

References

Van der Aart PJM, Smeenk-Enserink N (1975). Correlations between Distributions of Hunting
Spiders (Lycosidae, Ctenidae) and Environmental Characteristics in a Dune Area. Netherlands
Journal of Zoology, 25, 1–45.

De’ath G (2002). Multivariate Regression Trees: A New Technique for Modelling Species-Environment
Relationships. Ecology, 83(4), 1103–1117.

Examples

## load data
data("HuntingSpiders", package = "partykit")

## fit multivariate tree for 12-dimensional species abundance
## (warnings by mvtnorm are suppressed)
suppressWarnings(sptree <- ctree(arct.lute + pard.lugu + zora.spin + pard.nigr + pard.pull +

aulo.albi + troc.terr + alop.cune + pard.mont + alop.acce + alop.fabr +
arct.peri ~ herbs + reft + moss + sand + twigs + water, data = HuntingSpiders,
teststat = "max", minsplit = 5))

plot(sptree, terminal_panel = node_barplot)

https://CRAN.R-project.org/package=mvpart
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lmtree Linear Model Trees

Description

Model-based recursive partitioning based on least squares regression.

Usage

lmtree(formula, data, subset, na.action, weights, offset, cluster, ...)

Arguments

formula symbolic description of the model (of type y ~ z1 + ... + zl or y ~ x1 + ... +
xk | z1 + ... + zl; for details see below).

data, subset, na.action
arguments controlling formula processing via model.frame.

weights optional numeric vector of weights. By default these are treated as case weights
but the default can be changed in mob_control.

offset optional numeric vector with an a priori known component to be included in the
model y ~ x1 + ... + xk (i.e., only when x variables are specified).

cluster optional vector (typically numeric or factor) with a cluster ID to be employed
for clustered covariances in the parameter stability tests.

... optional control parameters passed to mob_control.

Details

Convenience interface for fitting MOBs (model-based recursive partitions) via the mob function.
lmtree internally sets up a model fit function for mob, using either lm.fit or lm.wfit (depending
on whether weights are used or not). Then mob is called using the residual sum of squares as the
objective function.

Compared to calling mob by hand, the implementation tries to avoid unnecessary computations
while growing the tree. Also, it provides a more elaborate plotting function.

Value

An object of class lmtree inheriting from modelparty. The info element of the overall party and
the individual nodes contain various informations about the models.

References

Zeileis A, Hothorn T, Hornik K (2008). Model-Based Recursive Partitioning. Journal of Computa-
tional and Graphical Statistics, 17(2), 492–514.

See Also

mob, mob_control, glmtree
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Examples

if(require("mlbench")) {

## Boston housing data
data("BostonHousing", package = "mlbench")
BostonHousing <- transform(BostonHousing,

chas = factor(chas, levels = 0:1, labels = c("no", "yes")),
rad = factor(rad, ordered = TRUE))

## linear model tree
bh_tree <- lmtree(medv ~ log(lstat) + I(rm^2) | zn +

indus + chas + nox + age + dis + rad + tax + crim + b + ptratio,
data = BostonHousing, minsize = 40)

## printing whole tree or individual nodes
print(bh_tree)
print(bh_tree, node = 7)

## plotting
plot(bh_tree)
plot(bh_tree, tp_args = list(which = "log(lstat)"))
plot(bh_tree, terminal_panel = NULL)

## estimated parameters
coef(bh_tree)
coef(bh_tree, node = 9)
summary(bh_tree, node = 9)

## various ways for computing the mean squared error (on the training data)
mean((BostonHousing$medv - fitted(bh_tree))^2)
mean(residuals(bh_tree)^2)
deviance(bh_tree)/sum(weights(bh_tree))
deviance(bh_tree)/nobs(bh_tree)

## log-likelihood and information criteria
logLik(bh_tree)
AIC(bh_tree)
BIC(bh_tree)
## (Note that this penalizes estimation of error variances, which
## were treated as nuisance parameters in the fitting process.)

## different types of predictions
bh <- BostonHousing[c(1, 10, 50), ]
predict(bh_tree, newdata = bh, type = "node")
predict(bh_tree, newdata = bh, type = "response")
predict(bh_tree, newdata = bh, type = function(object) summary(object)$r.squared)

}

if(require("AER")) {
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## Demand for economics journals data
data("Journals", package = "AER")
Journals <- transform(Journals,

age = 2000 - foundingyear,
chars = charpp * pages)

## linear regression tree (OLS)
j_tree <- lmtree(log(subs) ~ log(price/citations) | price + citations +

age + chars + society, data = Journals, minsize = 10, verbose = TRUE)

## printing and plotting
j_tree
plot(j_tree)

## coefficients and summary
coef(j_tree, node = 1:3)
summary(j_tree, node = 1:3)

}

if(require("AER")) {

## Beauty and teaching ratings data
data("TeachingRatings", package = "AER")

## linear regression (WLS)
## null model
tr_null <- lm(eval ~ 1, data = TeachingRatings, weights = students,

subset = credits == "more")
## main effects
tr_lm <- lm(eval ~ beauty + gender + minority + native + tenure + division,

data = TeachingRatings, weights = students, subset = credits == "more")
## tree
tr_tree <- lmtree(eval ~ beauty | minority + age + gender + division + native + tenure,

data = TeachingRatings, weights = students, subset = credits == "more",
caseweights = FALSE)

## visualization
plot(tr_tree)

## beauty slope coefficient
coef(tr_lm)[2]
coef(tr_tree)[, 2]

## R-squared
1 - deviance(tr_lm)/deviance(tr_null)
1 - deviance(tr_tree)/deviance(tr_null)
}



22 mob

mob Model-based Recursive Partitioning

Description

MOB is an algorithm for model-based recursive partitioning yielding a tree with fitted models as-
sociated with each terminal node.

Usage

mob(formula, data, subset, na.action, weights, offset, cluster,
fit, control = mob_control(), ...)

Arguments

formula symbolic description of the model (of type y ~ z1 + ... + zl or y ~ x1 + ... +
xk | z1 + ... + zl; for details see below).

data, subset, na.action
arguments controlling formula processing via model.frame.

weights optional numeric vector of weights. By default these are treated as case weights
but the default can be changed in mob_control.

offset optional numeric vector with an a priori known component to be included in the
model y ~ x1 + ... + xk (i.e., only when x variables are specified).

cluster optional vector (typically numeric or factor) with a cluster ID to be passed on
to the fit function and employed for clustered covariances in the parameter
stability tests.

fit function. A function for fitting the model within each node. For details see
below.

control A list with control parameters as returned by mob_control.

... Additional arguments passed to the fit function.

Details

Model-based partitioning fits a model tree using two groups of variables: (1) The model variables
which can be just a (set of) response(s) y or additionally include regressors x1, . . . , xk. These are
used for estimating the model parameters. (2) Partitioning variables z1, . . . , zl, which are used
for recursively partitioning the data. The two groups of variables are either specified as y ~ z1 +
... + zl (when there are no regressors) or y ~ x1 + ... + xk | z1 + ... + zl (when the model part
contains regressors). Both sets of variables may in principle be overlapping.

To fit a tree model the following algorithm is used.

1. fit a model to the y or y and x variables using the observations in the current node

2. Assess the stability of the model parameters with respect to each of the partitioning variables
z1, . . . , zl. If there is some overall instability, choose the variable z associated with the
smallest p value for partitioning, otherwise stop.
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3. Search for the locally optimal split in z by minimizing the objective function of the model.
Typically, this will be something like deviance or the negative logLik.

4. Refit the model in both kid subsamples and repeat from step 2.

More details on the conceptual design of the algorithm can be found in Zeileis, Hothorn, Hornik
(2008) and some illustrations are provided in vignette("MOB"). For specifying the fit function
two approaches are possible:

(1) It can be a function fit(y, x = NULL, start = NULL, weights = NULL,offset = NULL, ...).
The arguments y, x, weights, offset will be set to the corresponding elements in the current node
of the tree. Additionally, starting values will sometimes be supplied via start. Of course, the fit
function can choose to ignore any arguments that are not applicable, e.g., if the are no regressors x
in the model or if starting values or not supported. The returned object needs to have a class that has
associated coef, logLik, and estfun methods for extracting the estimated parameters, the maxi-
mized log-likelihood, and the empirical estimating function (i.e., score or gradient contributions),
respectively.

(2) It can be a function fit(y, x = NULL, start = NULL, weights = NULL,offset = NULL, ...,
estfun = FALSE, object = FALSE). The arguments have the same meaning as above but the re-
turned object needs to have a different structure. It needs to be a list with elements coefficients
(containing the estimated parameters), objfun (containing the minimized objective function), estfun
(the empirical estimating functions), and object (the fitted model object). The elements estfun,
or object should be NULL if the corresponding argument is set to FALSE.

Internally, a function of type (2) is set up by mob() in case a function of type (1) is supplied.
However, to save computation time, a function of type (2) may also be specified directly.

For the fitted MOB tree, several standard methods are provided such as print, predict, residuals,
logLik, deviance, weights, coef and summary. Some of these rely on reusing the corresponding
methods for the individual model objects in the terminal nodes. Functions such as coef, print,
summary also take a node argument that can specify the node IDs to be queried. Some examples are
given below.

More details can be found in vignette("mob", package = "partykit"). An overview of the
connections to other functions in the package is provided by Hothorn and Zeileis (2015).

Value

An object of class modelparty inheriting from party. The info element of the overall party and
the individual nodes contain various informations about the models.

References

Hothorn T, Zeileis A (2015). partykit: A Modular Toolkit for Recursive Partytioning in R. Journal
of Machine Learning Research, 16, 3905–3909.

Zeileis A, Hothorn T, Hornik K (2008). Model-Based Recursive Partitioning. Journal of Computa-
tional and Graphical Statistics, 17(2), 492–514.

See Also

mob_control, lmtree, glmtree
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Examples

if(require("mlbench")) {

## Pima Indians diabetes data
data("PimaIndiansDiabetes", package = "mlbench")

## a simple basic fitting function (of type 1) for a logistic regression
logit <- function(y, x, start = NULL, weights = NULL, offset = NULL, ...) {

glm(y ~ 0 + x, family = binomial, start = start, ...)
}

## set up a logistic regression tree
pid_tree <- mob(diabetes ~ glucose | pregnant + pressure + triceps + insulin +

mass + pedigree + age, data = PimaIndiansDiabetes, fit = logit)
## see lmtree() and glmtree() for interfaces with more efficient fitting functions

## print tree
print(pid_tree)

## print information about (some) nodes
print(pid_tree, node = 3:4)

## visualization
plot(pid_tree)

## coefficients and summary
coef(pid_tree)
coef(pid_tree, node = 1)
summary(pid_tree, node = 1)

## average deviance computed in different ways
mean(residuals(pid_tree)^2)
deviance(pid_tree)/sum(weights(pid_tree))
deviance(pid_tree)/nobs(pid_tree)

## log-likelihood and information criteria
logLik(pid_tree)
AIC(pid_tree)
BIC(pid_tree)

## predicted nodes
predict(pid_tree, newdata = head(PimaIndiansDiabetes, 6), type = "node")
## other types of predictions are possible using lmtree()/glmtree()
}

mob_control Control Parameters for Model-Based Partitioning

Description

Various parameters that control aspects the fitting algorithm for recursively partitioned mob models.
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Usage

mob_control(alpha = 0.05, bonferroni = TRUE, minsize = NULL, maxdepth = Inf,
mtry = Inf, trim = 0.1, breakties = FALSE, parm = NULL, dfsplit = TRUE, prune = NULL,
restart = TRUE, verbose = FALSE, caseweights = TRUE, ytype = "vector", xtype = "matrix",
terminal = "object", inner = terminal, model = TRUE, numsplit = "left",
catsplit = "binary", vcov = "opg", ordinal = "chisq", nrep = 10000,
minsplit = minsize, minbucket = minsize, applyfun = NULL, cores = NULL)

Arguments

alpha numeric significance level. A node is splitted when the (possibly Bonferroni-
corrected) p value for any parameter stability test in that node falls below alpha
(and the stopping criteria minsize and maxdepth are not fulfilled).

bonferroni logical. Should p values be Bonferroni corrected?
minsize, minsplit, minbucket

integer. The minimum number of observations in a node. If NULL, the default
is to use 10 times the number of parameters to be estimated (divided by the
number of responses per observation if that is greater than 1). minsize is the
recommended name and minsplit/minbucket are only included for backward
compatibility with previous versions of mob and compatibility with ctree, re-
spectively.

maxdepth integer. The maximum depth of the tree.

mtry integer. The number of partitioning variables randomly sampled as candidates
in each node for forest-style algorithms. If mtry is greater than the number of
partitioning variables, no random selection is performed. (Thus, by default all
available partitioning variables are considered.)

trim numeric. This specifies the trimming in the parameter instability test for the
numerical variables. If smaller than 1, it is interpreted as the fraction relative to
the current node size.

breakties logical. Should ties in numeric variables be broken randomly for computing the
associated parameter instability test?

parm numeric or character. Number or name of model parameters included in the
parameter instability tests (by default all parameters are included).

dfsplit logical or numeric. as.integer(dfsplit) is the degrees of freedom per se-
lected split employed when computing information criteria etc.

prune character, numeric, or function for specifying post-pruning rule. If prune is
NULL (the default), no post-pruning is performed. For likelihood-based mob()
trees, prune can be set to "AIC" or "BIC" for post-pruning based on the corre-
sponding information criteria. More general rules (also in scenarios that are not
likelihood-based), can be specified by function arguments to prune, for details
see below.

restart logical. When determining the optimal split point in a numerical variable: Should
model estimation be restarted with NULL starting values for each split? The de-
fault is TRUE. If FALSE, then the parameter estimates from the previous split point
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are used as starting values for the next split point (because in practice the differ-
ence are often not huge). (Note that in that case a for loop is used instead of the
applyfun for fitting models across sample splits.)

verbose logical. Should information about the fitting process of mob (such as test statis-
tics, p values, selected splitting variables and split points) be printed to the
screen?

caseweights logical. Should weights be interpreted as case weights? If TRUE, the number of
observations is sum(weights), otherwise it is sum(weights > 0).

ytype, xtype character. Specification of how mob should preprocess y and x variables. Possi-
ble choice are: "vector" (for y only), i.e., only one variable; "matrix", i.e., the
model matrix of all variables; "data.frame", i.e., a data frame of all variables.

terminal, inner character. Specification of which additional information ("estfun", "object",
or both) should be stored in each node. If NULL, no additional information is
stored.

model logical. Should the full model frame be stored in the resulting object?

numsplit character indicating how splits for numeric variables should be justified. Be-
cause any splitpoint in the interval between the last observation from the left
child segment and the first observation from the right child segment leads to
the same observed split, two options are available in mob_control: Either, the
split is "left"-justified (the default for backward compatibility) or "center"-
justified using the midpoint of the possible interval.

catsplit character indicating how (unordered) categorical variables should be splitted.
By default the best "binary" split is searched (by minimizing the objective
function). Alternatively, if set to "multiway", the node is simply splitted into
all levels of the categorical variable.

vcov character indicating which type of covariance matrix estimator should be em-
ployed in the parameter instability tests. The default is the outer product of gra-
dients ("opg"). Alternatively, vcov = "info" employs the information matrix
and vcov = "sandwich" the sandwich matrix (both of which are only sensible
for maximum likelihood estimation).

ordinal character indicating which type of parameter instability test should be employed
for ordinal partitioning variables (i.e., ordered factors). This can be "chisq",
"max", or "L2". If "chisq" then the variable is treated as unordered and a
chi-squared test is performed. If "L2", then a maxLM-type test as for numeric
variables is carried out but correcting for ties. This requires simulation of p-
values via catL2BB and requires some computation time. For "max" a weighted
double maximum test is used that computes p-values via pmvnorm.

nrep numeric. Number of replications in the simulation of p-values for the ordinal
"L2" statistic (if used).

applyfun an optional lapply-style function with arguments function(X, FUN, ...). It
is used for refitting the model across potential sample splits. The default is to use
the basic lapply function unless the cores argument is specified (see below).

cores numeric. If set to an integer the applyfun is set to mclapply with the desired
number of cores.
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Details

See mob for more details and references.

For post-pruning, prune can be set to a function(objfun, df, nobs) which either returns TRUE
to signal that a current node can be pruned or FALSE. All supplied arguments are of length two:
objfun is the sum of objective function values in the current node and its child nodes, respectively.
df is the degrees of freedom in the current node and its child nodes, respectively. nobs is vector
with the number of observations in the current node and the total number of observations in the
dataset, respectively.

If the objective function employed in the mob() call is the negative log-likelihood, then a suitable
function is set up on the fly by comparing (2 * objfun + penalty * df) in the current and the
daughter nodes. The penalty can then be set via a numeric or character value for prune: AIC is
used if prune = "AIC" or prune = 2 and BIC if prune = "BIC" or prune = log(n).

Value

A list of class mob_control containing the control parameters.

See Also

mob

model_frame_rpart Model Frame Method for rpart

Description

A model.frame method for rpart objects.

Usage

model_frame_rpart(formula, ...)

Arguments

formula an object of class rpart.

... additional arguments.

Details

A model.frame method for rpart objects. Because it is no longer possible to overwrite existing
methods, the function name is a little different here.

Value

A model frame.
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nodeapply Apply Functions Over Nodes

Description

Returns a list of values obtained by applying a function to party or partynode objects.

Usage

nodeapply(obj, ids = 1, FUN = NULL, ...)
## S3 method for class 'partynode'
nodeapply(obj, ids = 1, FUN = NULL, ...)
## S3 method for class 'party'
nodeapply(obj, ids = 1, FUN = NULL, by_node = TRUE, ...)

Arguments

obj an object of class partynode or party.

ids integer vector of node identifiers to apply over.

FUN a function to be applied to nodes. By default, the node itself is returned.

by_node a logical indicating if FUN is applied to subsets of party objects or partynode
objects (default).

... additional arguments.

Details

Function FUN is applied to all nodes with node identifiers in ids for a partynode object. The
method for party by default calls the nodeapply method on it’s node slot. If by_node is FALSE, it
is applied to a party object with root node ids.

Value

A list of results of length length(ids).

Examples

## a tree as flat list structure
nodelist <- list(

# root node
list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),

kids = 2:3),
# V4 <= 1.9, terminal node
list(id = 2L, info = "terminal A"),
# V4 > 1.9
list(id = 3L, split = partysplit(varid = 5L, breaks = 1.7),

kids = c(4L, 7L)),
# V5 <= 1.7
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list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
kids = 5:6),

# V4 <= 4.8, terminal node
list(id = 5L, info = "terminal B"),
# V4 > 4.8, terminal node
list(id = 6L, info = "terminal C"),
# V5 > 1.7, terminal node
list(id = 7L, info = "terminal D")

)

## convert to a recursive structure
node <- as.partynode(nodelist)

## return root node
nodeapply(node)

## return info slots of terminal nodes
nodeapply(node, ids = nodeids(node, terminal = TRUE),

FUN = function(x) info_node(x))

## fit tree using rpart
library("rpart")
rp <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)

## coerce to `constparty'
rpk <- as.party(rp)

## extract nodeids
nodeids(rpk)
unlist(nodeapply(node_party(rpk), ids = nodeids(rpk),

FUN = id_node))
unlist(nodeapply(rpk, ids = nodeids(rpk), FUN = id_node))

## but root nodes of party objects always have id = 1
unlist(nodeapply(rpk, ids = nodeids(rpk), FUN = function(x)

id_node(node_party(x)), by_node = FALSE))

nodeids Extract Node Identifiers

Description

Extract unique identifiers from inner and terminals nodes of a partynode object.

Usage

nodeids(obj, ...)
## S3 method for class 'partynode'
nodeids(obj, from = NULL, terminal = FALSE, ...)
## S3 method for class 'party'
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nodeids(obj, from = NULL, terminal = FALSE, ...)
get_paths(obj, i)

Arguments

obj an object of class partynode or party.

from an integer specifying node to start from.

terminal logical specifying if only node identifiers of terminal nodes are returned.

i a vector of node identifiers.

... additional arguments.

Details

The identifiers of each node are extracted from nodeids. get_paths returns the paths for extracting
the corresponding nodes using list subsets.

Value

A vector of node identifiers.

Examples

## a tree as flat list structure
nodelist <- list(

# root node
list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),

kids = 2:3),
# V4 <= 1.9, terminal node
list(id = 2L),
# V4 > 1.9
list(id = 3L, split = partysplit(varid = 1L, breaks = 1.7),

kids = c(4L, 7L)),
# V1 <= 1.7
list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),

kids = 5:6),
# V4 <= 4.8, terminal node
list(id = 5L),
# V4 > 4.8, terminal node
list(id = 6L),
# V1 > 1.7, terminal node
list(id = 7L)

)

## convert to a recursive structure
node <- as.partynode(nodelist)

## set up party object
data("iris")
tree <- party(node, data = iris,

fitted = data.frame("(fitted)" =
fitted_node(node, data = iris),
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check.names = FALSE))
tree

### ids of all nodes
nodeids(tree)

### ids of all terminal nodes
nodeids(tree, terminal = TRUE)

### ids of terminal nodes in subtree with root [3]
nodeids(tree, from = 3, terminal = TRUE)

### get paths and extract all terminal nodes
tr <- unclass(node_party(tree))
lapply(get_paths(tree, nodeids(tree, terminal = TRUE)),

function(path) tr[path])

panelfunctions Panel-Generators for Visualization of Party Trees

Description

The plot method for party and constparty objects are rather flexible and can be extended by panel
functions. Some pre-defined panel-generating functions of class grapcon_generator for the most
important cases are documented here.

Usage

node_inner(obj, id = TRUE, pval = TRUE, abbreviate = FALSE, fill = "white",
gp = gpar())

node_terminal(obj, digits = 3, abbreviate = FALSE,
fill = c("lightgray", "white"), id = TRUE,
just = c("center", "top"), top = 0.85,
align = c("center", "left", "right"), gp = NULL, FUN = NULL,
height = NULL, width = NULL)

edge_simple(obj, digits = 3, abbreviate = FALSE, justmin = Inf,
just = c("alternate", "increasing", "decreasing", "equal"),
fill = "white")

node_boxplot(obj, col = "black", fill = "lightgray", bg = "white", width = 0.5,
yscale = NULL, ylines = 3, cex = 0.5, id = TRUE, mainlab = NULL, gp = gpar())

node_barplot(obj, col = "black", fill = NULL, bg = "white",
beside = NULL, ymax = NULL, ylines = NULL, widths = 1, gap = NULL,
reverse = NULL, rot = 0, just = c("center", "top"), id = TRUE,
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mainlab = NULL, text = c("none", "horizontal", "vertical"), gp = gpar())

node_surv(obj, col = "black", bg = "white", yscale = c(0, 1), ylines = 2,
id = TRUE, mainlab = NULL, gp = gpar(), ...)

node_ecdf(obj, col = "black", bg = "white", ylines = 2,
id = TRUE, mainlab = NULL, gp = gpar(), ...)

node_bivplot(mobobj, which = NULL, id = TRUE, pop = TRUE,
pointcol = "black", pointcex = 0.5,
boxcol = "black", boxwidth = 0.5, boxfill = "lightgray",
bg = "white", fitmean = TRUE, linecol = "red",
cdplot = FALSE, fivenum = TRUE, breaks = NULL,
ylines = NULL, xlab = FALSE, ylab = FALSE, margins = rep(1.5, 4),
mainlab = NULL, ...)

node_mvar(obj, which = NULL, id = TRUE, pop = TRUE, ylines = NULL,
mainlab = NULL, varlab = TRUE, bg = "white", ...)

Arguments

obj an object of class party.

digits integer, used for formating numbers.

abbreviate logical indicating whether strings should be abbreviated.
col, pointcol, boxcol, linecol

a color for points and lines.
fill, boxfill, bg

a color to filling rectangles and backgrounds.

id logical. Should node IDs be plotted?

pval logical. Should node p values be plotted (if they are available)?

just justification of terminal panel viewport (node_terminal), or labels (edge_simple,
node_barplot).

justmin minimum average edge label length to employ justification via just in edge_panel,
otherwise just = "equal" is used. Thus, by default "equal" justification is al-
ways used but other justifications could be employed for finite justmin.

top in case of top justification, the npc coordinate at which the viewport is justified.

align alignment of text within terminal panel viewport.

ylines number of lines for spaces in y-direction.

widths widths in barplots.

boxwidth width in boxplots (called width in node_boxplot).

gap gap between bars in a barplot (node_barplot).

yscale limits in y-direction

ymax upper limit in y-direction

cex, pointcex character extension of points in scatter plots.
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beside logical indicating if barplots should be side by side or stacked.

reverse logical indicating whether the order of levels should be reversed for barplots.

rot arguments passed to grid.text for the x-axis labeling.

gp graphical parameters.

FUN function for formatting the info, passed to formatinfo_node.

height, width numeric, number of lines/columns for printing text.

mobobj an object of class modelparty as computed by mob.

which numeric or character. Optional selection of subset of regressor variables. By
default one panel for each regressor variable is drawn.

pop logical. Should the viewports in the individual nodes be popped after drawing?

fitmean logical. Should the fitted mean function be visualized?

cdplot logical. Should a CD plot (or a spineplot) be drawn when the response variable
is categorical?

fivenum logical. Should the five-number summary be used for splitting the x-axis in
spineplots?

breaks numeric. Optional numeric vector with breaks for the x-axis in splineplots.

xlab, ylab character. Optional annotation for x-axis and y-axis.

margins numeric. Margins around drawing area in viewport.

mainlab character or function. An optional title for the plot. Either a character or a
function(id, nobs).

varlab logical. Should the individual variable labels be attached to the mainlab for
multivariate responses?

text logical or character. Should percentage labels be drawn for each bar? The de-
fault is "none" or equivalently FALSE. Can be set to TRUE (or "horizontal") or
alternatively "vertical".

... additional arguments passed to callies (for example to survfit).

Details

The plot methods for party and constparty objects provide an extensible framework for the
visualization of binary regression trees. The user is allowed to specify panel functions for plot-
ting terminal and inner nodes as well as the corresponding edges. The panel functions to be used
should depend only on the node being visualized, however, for setting up an appropriate panel
function, information from the whole tree is typically required. Hence, party adopts the frame-
work of grapcon_generator (graphical appearance control) from the vcd package (Meyer, Zeileis
and Hornik, 2005) and provides several panel-generating functions. For convenience, the panel-
generating functions node_inner and edge_simple return panel functions to draw inner nodes and
left and right edges. For drawing terminal nodes, the functions returned by the other panel functions
can be used. The panel generating function node_terminal is a terse text-based representation of
terminal nodes.

Graphical representations of terminal nodes are available and depend on the kind of model and the
measurement scale of the variables modeled.
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For univariate regressions (typically fitted by ), node_surv returns a functions that plots Kaplan-
Meier curves in each terminal node; node_barplot, node_boxplot, node_hist, node_ecdf and
node_density can be used to plot bar plots, box plots, histograms, empirical cumulative distribu-
tion functions and estimated densities into the terminal nodes.

For multivariate regressions (typically fitted by mob), node_bivplot returns a panel function that
creates bivariate plots of the response against all regressors in the model. Depending on the scale of
the variables involved, scatter plots, box plots, spinograms (or CD plots) and spine plots are created.
For the latter two spine and cd_plot from the vcd package are re-used.

For multivariate responses in ctree, the panel function node_mvar generates one plot for each
response.

References

Meyer D, Zeileis A, Hornik K (2006). The Strucplot Framework: Visualizing Multi-Way Contin-
gency Tables with vcd. Journal of Statistical Software, 17(3), 1–48. doi:10.18637/jss.v017.i03

party Recursive Partytioning

Description

A class for representing decision trees and corresponding accessor functions.

Usage

party(node, data, fitted = NULL, terms = NULL, names = NULL,
info = NULL)

## S3 method for class 'party'
names(x)
## S3 replacement method for class 'party'
names(x) <- value
data_party(party, id = 1L)
## Default S3 method:
data_party(party, id = 1L)
node_party(party)
is.constparty(party)
is.simpleparty(party)

Arguments

node an object of class partynode.

data a (potentially empty) data.frame.

fitted an optional data.frame with nrow(data) rows (only if nrow(data) != 0 and
containing at least the fitted terminal node identifiers as element (fitted). In
addition, weights may be contained as element (weights) and responses as
(response).

https://doi.org/10.18637/jss.v017.i03
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terms an optional terms object.

names an optional vector of names to be assigned to each node of node.

info additional information.

x an object of class party.

party an object of class party.

value a character vector of up to the same length as x, or NULL.

id a node identifier.

Details

Objects of class party basically consist of a partynode object representing the tree structure in a
recursive way and data. The data argument takes a data.frame which, however, might have zero
columns. Optionally, a data.frame with at least one variable (fitted) containing the terminal
node numbers of data used for fitting the tree may be specified along with a terms object or any
additional (currently unstructured) information as info. Argument names defines names for all
nodes in node.

Method names can be used to extract or alter names for nodes. Function node_party returns the
node element of a party object. Further methods for party objects are documented in party-methods
and party-predict. Trees of various flavors can be coerced to party, see party-coercion.

Two classes inherit from class party and impose additional assumptions on the structure of this
object: Class constparty requires that the fitted slot contains a partitioning of the learning sam-
ple as a factor ("fitted") and the response values of all observations in the learning sample as
("response"). This structure is most flexible and allows for graphical display of the response
values in terminal nodes as well as for computing predictions based on arbitrary summary statistics.

Class simpleparty assumes that certain pre-computed information about the distribution of the
response variable is contained in the info slot nodes. At the moment, no formal class is used to
describe this information.

Value

The constructor returns an object of class party:

node an object of class partynode.

data a (potentially empty) data.frame.

fitted an optional data.frame with nrow(data) rows (only if nrow(data) != 0 and
containing at least the fitted terminal node identifiers as element (fitted). In
addition, weights may be contained as element (weights) and responses as
(response).

terms an optional terms object.

names an optional vector of names to be assigned to each node of node.

info additional information.

names can be used to set and retrieve names of nodes and node_party returns an object of class
partynode. data_party returns a data frame with observations contained in node id.
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References

Hothorn T, Zeileis A (2015). partykit: A Modular Toolkit for Recursive Partytioning in R. Journal
of Machine Learning Research, 16, 3905–3909.

Examples

### data ###
## artificial WeatherPlay data
data("WeatherPlay", package = "partykit")
str(WeatherPlay)

### splits ###
## split in overcast, humidity, and windy
sp_o <- partysplit(1L, index = 1:3)
sp_h <- partysplit(3L, breaks = 75)
sp_w <- partysplit(4L, index = 1:2)

## query labels
character_split(sp_o)

### nodes ###
## set up partynode structure
pn <- partynode(1L, split = sp_o, kids = list(

partynode(2L, split = sp_h, kids = list(
partynode(3L, info = "yes"),
partynode(4L, info = "no"))),

partynode(5L, info = "yes"),
partynode(6L, split = sp_w, kids = list(

partynode(7L, info = "yes"),
partynode(8L, info = "no")))))

pn

### tree ###
## party: associate recursive partynode structure with data
py <- party(pn, WeatherPlay)
py
plot(py)

### variations ###
## tree stump
n1 <- partynode(id = 1L, split = sp_o, kids = lapply(2L:4L, partynode))
print(n1, data = WeatherPlay)

## query fitted nodes and kids ids
fitted_node(n1, data = WeatherPlay)
kidids_node(n1, data = WeatherPlay)

## tree with full data sets
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t1 <- party(n1, data = WeatherPlay)

## tree with empty data set
party(n1, data = WeatherPlay[0, ])

## constant-fit tree
t2 <- party(n1,

data = WeatherPlay,
fitted = data.frame(
"(fitted)" = fitted_node(n1, data = WeatherPlay),
"(response)" = WeatherPlay$play,
check.names = FALSE),

terms = terms(play ~ ., data = WeatherPlay),
)
t2 <- as.constparty(t2)
t2
plot(t2)

party-coercion Coercion Functions

Description

Functions coercing various objects to objects of class party.

Usage

as.party(obj, ...)
## S3 method for class 'rpart'
as.party(obj, data = TRUE, ...)
## S3 method for class 'Weka_tree'
as.party(obj, data = TRUE, ...)
## S3 method for class 'XMLNode'
as.party(obj, ...)
pmmlTreeModel(file, ...)
as.constparty(obj, ...)
as.simpleparty(obj, ...)
## S3 method for class 'party'
as.simpleparty(obj, ...)
## S3 method for class 'simpleparty'
as.simpleparty(obj, ...)
## S3 method for class 'constparty'
as.simpleparty(obj, ...)
## S3 method for class 'XMLNode'
as.simpleparty(obj, ...)
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Arguments

obj an object of class rpart, Weka_tree, XMLnode or objects inheriting from party.

data logical. Should the model frame associated with the fitted obj be included in
the data of the party?

file a file name of a XML file containing a PMML description of a tree.

... additional arguments.

Details

Trees fitted using functions rpart or J48 are coerced to party objects. By default, objects of class
constparty are returned.

When information about the learning sample is available, party objects can be coerced to objects
of class constparty or simpleparty (see party for details).

Value

All methods return objects of class party.

Examples

## fit tree using rpart
library("rpart")
rp <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)

## coerce to `constparty'
as.party(rp)

party-methods Methods for Party Objects

Description

Methods for computing on party objects.

Usage

## S3 method for class 'party'
print(x,

terminal_panel = function(node)
formatinfo_node(node, default = "*", prefix = ": "),

tp_args = list(),
inner_panel = function(node) "", ip_args = list(),
header_panel = function(party) "",
footer_panel = function(party) "",
digits = getOption("digits") - 2, ...)

## S3 method for class 'simpleparty'
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print(x, digits = getOption("digits") - 4,
header = NULL, footer = TRUE, ...)

## S3 method for class 'constparty'
print(x, FUN = NULL, digits = getOption("digits") - 4,

header = NULL, footer = TRUE, ...)
## S3 method for class 'party'
length(x)
## S3 method for class 'party'
x[i, ...]
## S3 method for class 'party'
x[[i, ...]]
## S3 method for class 'party'
depth(x, root = FALSE, ...)
## S3 method for class 'party'
width(x, ...)
## S3 method for class 'party'
nodeprune(x, ids, ...)

Arguments

x an object of class party.

i an integer specifying the root of the subtree to extract.

terminal_panel a panel function for printing terminal nodes.

tp_args a list containing arguments to terminal_panel.

inner_panel a panel function for printing inner nodes.

ip_args a list containing arguments to inner_panel.

header_panel a panel function for printing the header.

footer_panel a panel function for printing the footer.

digits number of digits to be printed.

header header to be printed.

footer footer to be printed.

FUN a function to be applied to nodes.

root a logical. Should the root count be counted in depth?

ids a vector of node ids (or their names) to be pruned-off.

... additional arguments.

Details

length gives the number of nodes in the tree (in contrast to the length method for partynode
objects which returns the number of kid nodes in the root), depth the depth of the tree and width
the number of terminal nodes. The subset methods extract subtrees and the print method generates
a textual representation of the tree. nodeprune prunes-off nodes and makes sure that the node ids of
the resulting tree are in pre-order starting with root node id 1. For constparty objects, the fitted
slot is also changed.
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Examples

## a tree as flat list structure
nodelist <- list(

# root node
list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),

kids = 2:3),
# V4 <= 1.9, terminal node
list(id = 2L),
# V4 > 1.9
list(id = 3L, split = partysplit(varid = 5L, breaks = 1.7),

kids = c(4L, 7L)),
# V5 <= 1.7
list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),

kids = 5:6),
# V4 <= 4.8, terminal node
list(id = 5L),
# V4 > 4.8, terminal node
list(id = 6L),
# V5 > 1.7, terminal node
list(id = 7L)

)

## convert to a recursive structure
node <- as.partynode(nodelist)

## set up party object
data("iris")
tree <- party(node, data = iris,

fitted = data.frame("(fitted)" =
fitted_node(node, data = iris),
check.names = FALSE))

names(tree) <- paste("Node", nodeids(tree), sep = " ")

## number of kids in root node
length(tree)

## depth of tree
depth(tree)

## number of terminal nodes
width(tree)

## node number four
tree["Node 4"]
tree[["Node 4"]]

party-plot Visualization of Trees
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Description

plot method for party objects with extended facilities for plugging in panel functions.

Usage

## S3 method for class 'party'
plot(x, main = NULL,

terminal_panel = node_terminal, tp_args = list(),
inner_panel = node_inner, ip_args = list(),
edge_panel = edge_simple, ep_args = list(),
drop_terminal = FALSE, tnex = 1,
newpage = TRUE, pop = TRUE, gp = gpar(),
margins = NULL, ...)

## S3 method for class 'constparty'
plot(x, main = NULL,

terminal_panel = NULL, tp_args = list(),
inner_panel = node_inner, ip_args = list(),
edge_panel = edge_simple, ep_args = list(),
type = c("extended", "simple"), drop_terminal = NULL,
tnex = NULL, newpage = TRUE, pop = TRUE, gp = gpar(),
...)

## S3 method for class 'simpleparty'
plot(x, digits = getOption("digits") - 4, tp_args = NULL, ...)

Arguments

x an object of class party or constparty.

main an optional title for the plot.

type a character specifying the complexity of the plot: extended tries to visualize
the distribution of the response variable in each terminal node whereas simple
only gives some summary information.

terminal_panel an optional panel function of the form function(node) plotting the terminal
nodes. Alternatively, a panel generating function of class "grapcon_generator"
that is called with arguments x and tp_args to set up a panel function. By
default, an appropriate panel function is chosen depending on the scale of the
dependent variable.

tp_args a list of arguments passed to terminal_panel if this is a "grapcon_generator"
object.

inner_panel an optional panel function of the form function(node) plotting the inner nodes.
Alternatively, a panel generating function of class "grapcon_generator" that
is called with arguments x and ip_args to set up a panel function.

ip_args a list of arguments passed to inner_panel if this is a "grapcon_generator"
object.

edge_panel an optional panel function of the form function(split, ordered = FALSE,
left = TRUE) plotting the edges. Alternatively, a panel generating function of
class "grapcon_generator" that is called with arguments x and ip_args to set
up a panel function.
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ep_args a list of arguments passed to edge_panel if this is a "grapcon_generator"
object.

drop_terminal a logical indicating whether all terminal nodes should be plotted at the bottom.

tnex a numeric value giving the terminal node extension in relation to the inner nodes.

newpage a logical indicating whether grid.newpage() should be called.

pop a logical whether the viewport tree should be popped before return.

gp graphical parameters.

margins numeric vector of margin sizes.

digits number of digits to be printed.

... additional arguments passed to callies.

Details

This plot method for party objects provides an extensible framework for the visualization of
binary regression trees. The user is allowed to specify panel functions for plotting terminal and
inner nodes as well as the corresponding edges. Panel functions for plotting inner nodes, edges and
terminal nodes are available for the most important cases and can serve as the basis for user-supplied
extensions, see node_inner.

More details on the ideas and concepts of panel-generating functions and "grapcon_generator"
objects in general can be found in Meyer, Zeileis and Hornik (2005).

References

Meyer D, Zeileis A, Hornik K (2006). The Strucplot Framework: Visualizing Multi-Way Contin-
gency Tables with vcd. Journal of Statistical Software, 17(3), 1–48. doi:10.18637/jss.v017.i03

See Also

node_inner, node_terminal, edge_simple, node_barplot, node_boxplot.

party-predict Tree Predictions

Description

Compute predictions from party objects.

Usage

## S3 method for class 'party'
predict(object, newdata = NULL, perm = NULL, ...)
predict_party(party, id, newdata = NULL, ...)
## Default S3 method:
predict_party(party, id, newdata = NULL, FUN = NULL, ...)
## S3 method for class 'constparty'

https://doi.org/10.18637/jss.v017.i03
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predict_party(party, id, newdata = NULL,
type = c("response", "prob", "quantile", "density", "node"),
at = if (type == "quantile") c(0.1, 0.5, 0.9),
FUN = NULL, simplify = TRUE, ...)

## S3 method for class 'simpleparty'
predict_party(party, id, newdata = NULL,

type = c("response", "prob", "node"), ...)

Arguments

object objects of class party.

newdata an optional data frame in which to look for variables with which to predict, if
omitted, the fitted values are used.

perm an optional character vector of variable names. Splits of nodes with a primary
split in any of these variables will be permuted (after dealing with surrogates).
Note that surrogate split in the perm variables will no be permuted.

party objects of class party.

id a vector of terminal node identifiers.

type a character string denoting the type of predicted value returned, ignored when
argument FUN is given. For "response", the mean of a numeric response, the
predicted class for a categorical response or the median survival time for a cen-
sored response is returned. For "prob" the matrix of conditional class probabil-
ities (simplify = TRUE) or a list with the conditional class probabilities for each
observation (simplify = FALSE) is returned for a categorical response. For nu-
meric and censored responses, a list with the empirical cumulative distribution
functions and empirical survivor functions (Kaplan-Meier estimate) is returned
when type = "prob". "node" returns an integer vector of terminal node identi-
fiers.

FUN a function to extract (default method) or compute (constparty method) sum-
mary statistics. For the default method, this is a function of a terminal node
only, for the constparty method, predictions for each node have to be com-
puted based on arguments (y, w) where y is the response and w are case weights.

at if the return value is a function (as the empirical cumulative distribution function
or the empirical quantile function), this function is evaluated at values at and
these numeric values are returned. If at is NULL, the functions themselves are
returned in a list.

simplify a logical indicating whether the resulting list of predictions should be converted
to a suitable vector or matrix (if possible).

... additional arguments.

Details

The predict method for party objects computes the identifiers of the predicted terminal nodes,
either for new data in newdata or for the learning samples (only possible for objects of class
constparty). These identifiers are delegated to the corresponding predict_party method which
computes (via FUN for class constparty) or extracts (class simpleparty) the actual predictions.
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Value

A list of predictions, possibly simplified to a numeric vector, numeric matrix or factor.

Examples

## fit tree using rpart
library("rpart")
rp <- rpart(skips ~ Opening + Solder + Mask + PadType + Panel,

data = solder, method = 'anova')

## coerce to `constparty'
pr <- as.party(rp)

## mean predictions
predict(pr, newdata = solder[c(3, 541, 640),])

## ecdf
predict(pr, newdata = solder[c(3, 541, 640),], type = "prob")

## terminal node identifiers
predict(pr, newdata = solder[c(3, 541, 640),], type = "node")

## median predictions
predict(pr, newdata = solder[c(3, 541, 640),],

FUN = function(y, w = 1) median(y))

partynode Inner and Terminal Nodes

Description

A class for representing inner and terminal nodes in trees and functions for data partitioning.

Usage

partynode(id, split = NULL, kids = NULL, surrogates = NULL,
info = NULL)

kidids_node(node, data, vmatch = 1:ncol(data),
obs = NULL, perm = NULL)

fitted_node(node, data, vmatch = 1:ncol(data),
obs = 1:nrow(data), perm = NULL)

id_node(node)
split_node(node)
surrogates_node(node)
kids_node(node)
info_node(node)
formatinfo_node(node, FUN = NULL, default = "", prefix = NULL, ...)
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Arguments

id integer, a unique identifier for a node.

split an object of class partysplit.

kids a list of partynode objects.

surrogates a list of partysplit objects.

info additional information.

node an object of class partynode.

data a list or data.frame.

vmatch a permutation of the variable numbers in data.

obs a logical or integer vector indicating a subset of the observations in data.

perm a vector of integers specifying the variables to be permuted prior before split-
ting (i.e., for computing permutation variable importances). The default NULL
doesn’t alter the data.

FUN function for formatting the info, for default see below.

default a character used if the info in node is NULL.

prefix an optional prefix to be added to the returned character.

... further arguments passed to capture.output.

Details

A node represents both inner and terminal nodes in a tree structure. Each node has a unique identifier
id. A node consisting only of such an identifier (and possibly additional information in info) is a
terminal node.

Inner nodes consist of a primary split (an object of class partysplit) and at least two kids (daughter
nodes). Kid nodes are objects of class partynode itself, so the tree structure is defined recursively.
In addition, a list of partysplit objects offering surrogate splits can be supplied. Like partysplit
objects, partynode objects aren’t connected to the actual data.

Function kidids_node() determines how the observations in data[obs,] are partitioned into the
kid nodes and returns the number of the list element in list kids each observations belongs to (and
not it’s identifier). This is done by evaluating split (and possibly all surrogate splits) on data
using kidids_split.

Function fitted_node() performs all splits recursively and returns the identifier id of the terminal
node each observation in data[obs,] belongs to. Arguments vmatch, obs and perm are passed to
kidids_split.

Function formatinfo_node() extracts the the info from node and formats it to a character
vector using the following strategy: If is.null(info), the default is returned. Otherwise, FUN
is applied for formatting. The default function uses as.character for atomic objects and applies
capture.output to print(info) for other objects. Optionally, a prefix can be added to the
computed character string.

All other functions are accessor functions for extracting information from objects of class partynode.
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Value

The constructor partynode() returns an object of class partynode:

id a unique integer identifier for a node.

split an object of class partysplit.

kids a list of partynode objects.

surrogates a list of partysplit objects.

info additional information.

kidids_split() returns an integer vector describing the partition of the observations into kid nodes
by their position in list kids.

fitted_node() returns the node identifiers (id) of the terminal nodes each observation belongs to.

References

Hothorn T, Zeileis A (2015). partykit: A Modular Toolkit for Recursive Partytioning in R. Journal
of Machine Learning Research, 16, 3905–3909.

Examples

data("iris", package = "datasets")

## a stump defined by a binary split in Sepal.Length
stump <- partynode(id = 1L,

split = partysplit(which(names(iris) == "Sepal.Length"),
breaks = 5),

kids = lapply(2:3, partynode))

## textual representation
print(stump, data = iris)

## list element number and node id of the two terminal nodes
table(kidids_node(stump, iris),

fitted_node(stump, data = iris))

## assign terminal nodes with probability 0.5
## to observations with missing `Sepal.Length'
iris_NA <- iris
iris_NA[sample(1:nrow(iris), 50), "Sepal.Length"] <- NA
table(fitted_node(stump, data = iris_NA,

obs = !complete.cases(iris_NA)))

## a stump defined by a primary split in `Sepal.Length'
## and a surrogate split in `Sepal.Width' which
## determines terminal nodes for observations with
## missing `Sepal.Length'
stump <- partynode(id = 1L,

split = partysplit(which(names(iris) == "Sepal.Length"),
breaks = 5),

kids = lapply(2:3, partynode),
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surrogates = list(partysplit(
which(names(iris) == "Sepal.Width"), breaks = 3)))

f <- fitted_node(stump, data = iris_NA,
obs = !complete.cases(iris_NA))

tapply(iris_NA$Sepal.Width[!complete.cases(iris_NA)], f, range)

partynode-methods Methods for Node Objects

Description

Methods for computing on partynode objects.

Usage

is.partynode(x)
as.partynode(x, ...)
## S3 method for class 'partynode'
as.partynode(x, from = NULL, recursive = TRUE, ...)
## S3 method for class 'list'
as.partynode(x, ...)
## S3 method for class 'partynode'
as.list(x, ...)
## S3 method for class 'partynode'
length(x)
## S3 method for class 'partynode'
x[i, ...]
## S3 method for class 'partynode'
x[[i, ...]]
is.terminal(x, ...)
## S3 method for class 'partynode'
is.terminal(x, ...)
## S3 method for class 'partynode'
depth(x, root = FALSE, ...)
width(x, ...)
## S3 method for class 'partynode'
width(x, ...)
## S3 method for class 'partynode'
print(x, data = NULL, names = NULL,

inner_panel = function(node) "",
terminal_panel = function(node) " *",
prefix = "", first = TRUE, digits = getOption("digits") - 2,
...)

## S3 method for class 'partynode'
nodeprune(x, ids, ...)
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Arguments

x an object of class partynode or list.

from an integer giving the identifier of the root node.

recursive a logical, if FALSE, only the id of the root node is checked against from. If TRUE,
the ids of all nodes are checked.

i an integer specifying the kid to extract.

root a logical. Should the root count be counted in depth?

data an optional data.frame.

names a vector of names for nodes.

terminal_panel a panel function for printing terminal nodes.

inner_panel a panel function for printing inner nodes.

prefix lines start with this symbol.

first a logical.

digits number of digits to be printed.

ids a vector of node ids to be pruned-off.

... additional arguments.

Details

is.partynode checks if the argument is a valid partynode object. is.terminal is TRUE for termi-
nal nodes and FALSE for inner nodes. The subset methods return the partynode object correspond-
ing to the ith kid.

The as.partynode and as.list methods can be used to convert flat list structures into recursive
partynode objects and vice versa. as.partynode applied to partynode objects renumbers the
recursive nodes starting with root node identifier from.

length gives the number of kid nodes of the root node, depth the depth of the tree and width the
number of terminal nodes.

Examples

## a tree as flat list structure
nodelist <- list(

# root node
list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),

kids = 2:3),
# V4 <= 1.9, terminal node
list(id = 2L),
# V4 > 1.9
list(id = 3L, split = partysplit(varid = 1L, breaks = 1.7),

kids = c(4L, 7L)),
# V1 <= 1.7
list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),

kids = 5:6),
# V4 <= 4.8, terminal node
list(id = 5L),
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# V4 > 4.8, terminal node
list(id = 6L),
# V1 > 1.7, terminal node
list(id = 7L)

)

## convert to a recursive structure
node <- as.partynode(nodelist)

## print raw recursive structure without data
print(node)

## print tree along with the associated iris data
data("iris", package = "datasets")
print(node, data = iris)

## print subtree
print(node[2], data = iris)

## print subtree, with root node number one
print(as.partynode(node[2], from = 1), data = iris)

## number of kids in root node
length(node)

## depth of tree
depth(node)

## number of terminal nodes
width(node)

## convert back to flat structure
as.list(node)

partysplit Binary and Multiway Splits

Description

A class for representing multiway splits and functions for computing on splits.

Usage

partysplit(varid, breaks = NULL, index = NULL, right = TRUE,
prob = NULL, info = NULL)

kidids_split(split, data, vmatch = 1:length(data), obs = NULL)
character_split(split, data = NULL,

digits = getOption("digits") - 2)
varid_split(split)
breaks_split(split)
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index_split(split)
right_split(split)
prob_split(split)
info_split(split)

Arguments

varid an integer specifying the variable to split in, i.e., a column number in data.
breaks a numeric vector of split points.
index an integer vector containing a contiguous sequence from one to the number of

kid nodes. May contain NAs.
right a logical, indicating if the intervals defined by breaks should be closed on the

right (and open on the left) or vice versa.
prob a numeric vector representing a probability distribution over kid nodes.
info additional information.
split an object of class partysplit.
data a list or data.frame.
vmatch a permutation of the variable numbers in data.
obs a logical or integer vector indicating a subset of the observations in data.
digits minimal number of significant digits.

Details

A split is basically a function that maps data, more specifically a partitioning variable, to a set of
integers indicating the kid nodes to send observations to. Objects of class partysplit describe
such a function and can be set-up via the partysplit() constructor. The variables are available
in a list or data.frame (here called data) and varid specifies the partitioning variable, i.e., the
variable or list element to split in. The constructor partysplit() doesn’t have access to the actual
data, i.e., doesn’t estimate splits.

kidids_split(split, data) actually partitions the data data[obs,varid_split(split)] and
assigns an integer (giving the kid node number) to each observation. If vmatch is given, the variable
vmatch[varid_split(split)] is used.

character_split() returns a character representation of its split argument. The remaining func-
tions defined here are accessor functions for partysplit objects.

The numeric vector breaks defines how the range of the partitioning variable (after coercing to a
numeric via as.numeric) is divided into intervals (like in cut) and may be NULL. These intervals
are represented by the numbers one to length(breaks) + 1.

index assigns these length(breaks) + 1 intervals to one of at least two kid nodes. Thus, index
is a vector of integers where each element corresponds to one element in a list kids containing
partynode objects, see partynode for details. The vector index may contain NAs, in that case, the
corresponding values of the splitting variable are treated as missings (for example factor levels that
are not present in the learning sample). Either breaks or index must be given. When breaks is
NULL, it is assumed that the partitioning variable itself has storage mode integer (e.g., is a factor).

prob defines a probability distribution over all kid nodes which is used for random splitting when a
deterministic split isn’t possible (due to missing values, for example).

info takes arbitrary user-specified information.
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Value

The constructor partysplit() returns an object of class partysplit:

varid an integer specifying the variable to split in, i.e., a column number in data,

breaks a numeric vector of split points,

index an integer vector containing a contiguous sequence from one to the number of
kid nodes,

right a logical, indicating if the intervals defined by breaks should be closed on the
right (and open on the left) or vice versa

prob a numeric vector representing a probability distribution over kid nodes,

info additional information.

kidids_split() returns an integer vector describing the partition of the observations into kid
nodes.

character_split() gives a character representation of the split and the remaining functions return
the corresponding slots of partysplit objects.

References

Hothorn T, Zeileis A (2015). partykit: A Modular Toolkit for Recursive Partytioning in R. Journal
of Machine Learning Research, 16, 3905–3909.

See Also

cut

Examples

data("iris", package = "datasets")

## binary split in numeric variable `Sepal.Length'
sl5 <- partysplit(which(names(iris) == "Sepal.Length"),

breaks = 5)
character_split(sl5, data = iris)
table(kidids_split(sl5, data = iris), iris$Sepal.Length <= 5)

## multiway split in numeric variable `Sepal.Width',
## higher values go to the first kid, smallest values
## to the last kid
sw23 <- partysplit(which(names(iris) == "Sepal.Width"),

breaks = c(3, 3.5), index = 3:1)
character_split(sw23, data = iris)
table(kidids_split(sw23, data = iris),

cut(iris$Sepal.Width, breaks = c(-Inf, 2, 3, Inf)))

## binary split in factor `Species'
sp <- partysplit(which(names(iris) == "Species"),

index = c(1L, 1L, 2L))
character_split(sp, data = iris)
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table(kidids_split(sp, data = iris), iris$Species)

## multiway split in factor `Species'
sp <- partysplit(which(names(iris) == "Species"), index = 1:3)
character_split(sp, data = iris)
table(kidids_split(sp, data = iris), iris$Species)

## multiway split in numeric variable `Sepal.Width'
sp <- partysplit(which(names(iris) == "Sepal.Width"),

breaks = quantile(iris$Sepal.Width))
character_split(sp, data = iris)

prune.modelparty Post-Prune modelparty Objects

Description

Post-pruning of modelparty objects based on information criteria like AIC, BIC, or related user-
defined criteria.

Usage

## S3 method for class 'modelparty'
prune(tree, type = "AIC", ...)

Arguments

tree object of class modelparty.

type pruning type. Can be "AIC", "BIC" or a user-defined function (details below).

... additional arguments.

Details

In mob-based model trees, pre-pruning based on p-values is used by default and often no post-
pruning is necessary in such trees. However, if pre-pruning is switched off (by using a large alpha)
or does is not sufficient (e.g., possibly in large samples) the prune method can be used for subse-
quent post-pruning based on information criteria.

The function prune.modelparty can be called directly but it is also registered as a method for the
generic prune function from the rpart package. Thus, if rpart is attached, prune(tree, type =
"AIC", ...) also works (see examples below).

To customize the post-pruning strategy, type can be set to a function(objfun, df, nobs) which
either returns TRUE to signal that a current node can be pruned or FALSE. All supplied arguments are
of length two: objfun is the sum of objective function values in the current node and its child nodes,
respectively. df is the degrees of freedom in the current node and its child nodes, respectively. nobs
is vector with the number of observations in the current node and the total number of observations
in the dataset, respectively.
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For "AIC" and "BIC" type is transformed so that AIC or BIC are computed. However, this assumes
that the objfun used in tree is actually the negative log-likelihood. The degrees of freedom as-
sumed for a split can be set via the dfsplit argument in mob_control when computing the tree
or manipulated later by changing the value of tree$info$control$dfsplit.

Value

An object of class modelparty where the associated tree is either the same as the original or smaller.

See Also

prune, lmtree, glmtree, mob

Examples

set.seed(29)
n <- 1000
d <- data.frame(

x = runif(n),
z = runif(n),
z_noise = factor(sample(1:3, size = n, replace = TRUE))

)
d$y <- rnorm(n, mean = d$x * c(-1, 1)[(d$z > 0.7) + 1], sd = 3)

## glm versus lm / logLik versus sum of squared residuals
fmla <- y ~ x | z + z_noise
lm_big <- lmtree(formula = fmla, data = d, maxdepth = 3, alpha = 1)
glm_big <- glmtree(formula = fmla, data = d, maxdepth = 3, alpha = 1)

AIC(lm_big)
AIC(glm_big)

## load rpart for prune() generic
## (otherwise: use prune.modelparty directly)
if (require("rpart")) {

## pruning
lm_aic <- prune(lm_big, type = "AIC")
lm_bic <- prune(lm_big, type = "BIC")

width(lm_big)
width(lm_aic)
width(lm_bic)

glm_aic <- prune(glm_big, type = "AIC")
glm_bic <- prune(glm_big, type = "BIC")

width(glm_big)
width(glm_aic)
width(glm_bic)

}
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varimp Variable Importance

Description

Standard and conditional variable importance for ‘cforest’, following the permutation principle of
the ‘mean decrease in accuracy’ importance in ‘randomForest’.

Usage

## S3 method for class 'constparty'
varimp(object, nperm = 1L,

risk = c("loglik", "misclassification"), conditions = NULL,
mincriterion = 0, ...)

## S3 method for class 'cforest'
varimp(object, nperm = 1L,

OOB = TRUE, risk = c("loglik", "misclassification"),
conditional = FALSE, threshold = .2, applyfun = NULL,
cores = NULL, ...)

Arguments

object an object as returned by cforest.
mincriterion the value of the test statistic or 1 - p-value that must be exceeded in order to

include a split in the computation of the importance. The default mincriterion
= 0 guarantees that all splits are included.

conditional a logical determining whether unconditional or conditional computation of the
importance is performed.

threshold the value of the test statistic or 1 - p-value of the association between the vari-
able of interest and a covariate that must be exceeded inorder to include the
covariate in the conditioning scheme for the variable of interest (only relevant if
conditional = TRUE).

nperm the number of permutations performed.
OOB a logical determining whether the importance is computed from the out-of-bag

sample or the learning sample (not suggested).
risk a character determining the risk to be evaluated.
conditions a list of conditions.
applyfun an optional lapply-style function with arguments function(X, FUN, ...). It

is used for computing the variable importances for each tree. The default is
to use the basic lapply function unless the cores argument is specified (see
below). Extra care is needed to ensure correct seeds are used in the parallel runs
(RNGkind("L'Ecuyer-CMRG") for example).

cores numeric. If set to an integer the applyfun is set to mclapply with the desired
number of cores.

... additional arguments, not used.
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Details

NEEDS UPDATE

Function varimp can be used to compute variable importance measures similar to those computed
by importance. Besides the standard version, a conditional version is available, that adjusts for
correlations between predictor variables.

If conditional = TRUE, the importance of each variable is computed by permuting within a grid
defined by the covariates that are associated (with 1 - p-value greater than threshold) to the variable
of interest. The resulting variable importance score is conditional in the sense of beta coefficients in
regression models, but represents the effect of a variable in both main effects and interactions. See
Strobl et al. (2008) for details.

Note, however, that all random forest results are subject to random variation. Thus, before interpret-
ing the importance ranking, check whether the same ranking is achieved with a different random
seed – or otherwise increase the number of trees ntree in ctree_control.

Note that in the presence of missings in the predictor variables the procedure described in Hapfelmeier
et al. (2012) is performed.

Value

A vector of ‘mean decrease in accuracy’ importance scores.

References

Leo Breiman (2001). Random Forests. Machine Learning, 45(1), 5–32.

Alexander Hapfelmeier, Torsten Hothorn, Kurt Ulm, and Carolin Strobl (2014). A New Variable
Importance Measure for Random Forests with Missing Data. Statistics and Computing, 24(1), 21-
34. doi:10.1007/s1122201293491

Torsten Hothorn, Kurt Hornik, and Achim Zeileis (2006b). Unbiased Recursive Partitioning: A
Conditional Inference Framework. Journal of Computational and Graphical Statistics, 15(3), 651-
674. doi:10.1198/106186006X133933

Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis
(2008). Conditional Variable Importance for Random Forests. BMC Bioinformatics, 9, 307. doi:10.1186/
14712105825

Examples

set.seed(290875)
data("readingSkills", package = "party")
readingSkills.cf <- cforest(score ~ ., data = readingSkills,

mtry = 2, ntree = 50)

# standard importance
varimp(readingSkills.cf)

# conditional importance, may take a while...
varimp(readingSkills.cf, conditional = TRUE)

https://doi.org/10.1007/s11222-012-9349-1
https://doi.org/10.1198/106186006X133933
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1186/1471-2105-8-25
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WeatherPlay Weather Conditions and Playing a Game

Description

Artificial data set concerning the conditions suitable for playing some unspecified game.

Usage

data("WeatherPlay")

Format

A data frame containing 14 observations on 5 variables.

outlook factor.

temperature numeric.

humidity numeric.

windy factor.

play factor.

Source

Table 1.3 in Witten and Frank (2011).

References

Witten IH, Frank E (2011). Data Mining: Practical Machine Learning Tools and Techniques. 3rd
Edition, Morgan Kaufmann, San Francisco.

See Also

party, partynode, partysplit

Examples

## load weather data
data("WeatherPlay", package = "partykit")
WeatherPlay

## construct simple tree
pn <- partynode(1L,

split = partysplit(1L, index = 1:3),
kids = list(

partynode(2L,
split = partysplit(3L, breaks = 75),
kids = list(

partynode(3L, info = "yes"),
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partynode(4L, info = "no"))),
partynode(5L, info = "yes"),
partynode(6L,

split = partysplit(4L, index = 1:2),
kids = list(

partynode(7L, info = "yes"),
partynode(8L, info = "no")))))

pn

## couple with data
py <- party(pn, WeatherPlay)

## print/plot/predict
print(py)
plot(py)
predict(py, newdata = WeatherPlay)

## customize printing
print(py,

terminal_panel = function(node) paste(": play=", info_node(node), sep = ""))
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