Title: | Precipitation Observations and NWP Forecasts from GEFS |
---|---|
Description: | Precipitation observations for the month of July in the years 1985-2012 for 95 stations in Tyrol, Austria, obtained from EHYD. Numerical weather prediction (NWP) forecasts from GEFS. |
Authors: | Lisa Schlosser [aut, cre], Reto Stauffer [aut], Achim Zeileis [aut] |
Maintainer: | Lisa Schlosser <[email protected]> |
License: | GPL-2 | GPL-3 |
Version: | 0.2-0 |
Built: | 2025-01-14 13:37:38 UTC |
Source: | https://github.com/r-forge/partykit |
The function evalmodels
fits distributional trees (disttree
),
distributional forests (distforest
),
a prespecified GAMLSS (gamlss
),
a boosted GAMLSS (gamboostLSS
),
and an EMOS model (crch
) to precipitation data.
The results are compared based on CRPS, log-likelihood and RMSE.
evalmodels(station, train, test, ntree = 100, distfamily = "gaussian", tree_minsplit = 50, tree_minbucket = 20, tree_mincrit = 0.95, forest_minsplit = 50, forest_minbucket = 20, forest_mincrit = 0, forest_mtry = 27, gamboost_cvr = FALSE)
evalmodels(station, train, test, ntree = 100, distfamily = "gaussian", tree_minsplit = 50, tree_minbucket = 20, tree_mincrit = 0.95, forest_minsplit = 50, forest_minbucket = 20, forest_mincrit = 0, forest_mtry = 27, gamboost_cvr = FALSE)
station |
|
train |
|
test |
|
ntree |
|
distfamily |
|
tree_minsplit |
|
tree_mincrit |
|
tree_minbucket |
|
forest_minsplit |
|
forest_minbucket |
|
forest_mincrit |
|
forest_mtry |
|
gamboost_cvr |
|
evalmodels
returns a list with the following components:
CRPS |
CRPS (continuos ranked probability score) of all methods, average over testing data. |
LS |
Logarithmic score (= log-likelihood) of all methods, average over testing data. |
RMSE |
Root mean squared error of all methods, average over testing data. |
if(require("crch") & require("disttree") & require("gamlss") & require("gamlss.dist") & require("gamlss.cens") & require("gamboostLSS") & require("mboost") & require("partykit") & require("scoringRules") & require("survival") ) { evalmodels(station = "Axams", train = 1985:2008, test = 2009:2012, distfamily = "gaussian") }
if(require("crch") & require("disttree") & require("gamlss") & require("gamlss.dist") & require("gamlss.cens") & require("gamboostLSS") & require("mboost") & require("partykit") & require("scoringRules") & require("survival") ) { evalmodels(station = "Axams", train = 1985:2008, test = 2009:2012, distfamily = "gaussian") }
Topographic data to plot a map of Tyrol and surrounding areas.
data("MapTyrol")
data("MapTyrol")
A list
of two objects: a RasterLayer
containing topographic data of Tyrol and surrounding areas and a SpatialPolygons
representing the border of Tyrol.
https://www.data.gv.at/katalog/dataset/vgd-stichtagsdaten-1-250-000, https://www.earthenv.org/DEM
Robinson N, Regetz J, Guralnick R P (2014). EarthEnv-DEM90: A Nearly-Global, Void-Free, Multi-Scale Smoothed, 90m Digital Elevation Model From Fused ASTER and SRTM Data, ISPRS Journal of Photogrammetry and Remote Sensing, 87, 57–67. doi:10.1016/j.isprsjprs.2013.11.002
EarthEnv-DEM90e website: https://www.earthenv.org/DEM.html
Bundesamt für Eich- und Vermessungswesen
https://www.data.gv.at/katalog/dataset/vgd-stichtagsdaten-1-250-000
data("MapTyrol", package = "RainTyrol")
data("MapTyrol", package = "RainTyrol")
Observations of precipitation sums and weather forecasts of a set of meteorological quantities from an ensemble prediction system for 95 observation stations in Tyrol.
data("RainTyrol")
data("RainTyrol")
A data.frame
consisting of the stations' names, observation day and year,
power transformed observations of daily precipitation sums and the corresponding
meteorological ensemble predictions for all 95 observation stations. The base variables
of the numerical ensemble predictions are listed below. For each of them variations
such as ensemble mean/standard deviation/minimum/maximum are included in the dataset.
All “power transformed” values use the same power parameter p=1/1.6
.
character
. Name of the observation station.
numeric
. Observed total precipitation (power transformed).
integer
. Year in which the observation was taken.
integer
. Day for which the observation was taken.
numeric
.
Predicted total precipitation (power transformed).
numeric
.
Predicted convective available potential energy (power transformed).
numeric
.
Predicted downwards shortwave radiation flux (“sunshine”).
numeric
.
Predicted mean sea level pressure.
numeric
.
Predicted precipitable water.
numeric
.
Predicted total column-integrated condensate.
numeric
.
Predicted 2m maximum temperature.
numeric
.
Predicted temperature on 500 hPa.
numeric
.
Predicted temperature on 700 hPa.
numeric
.
Predicted temperature on 850 hPa.
numeric
.
Predicted temperature difference 500 hPa to 850 hPa.
numeric
.
Predicted temperature difference 700 hPa to 850 hPa.
numeric
.
Predicted temperature difference 500 hPa to 700 hPa.
These observation sites are maintained by the hydrographical service Tyrol and provide daily precipitation sums reported at 06~UTC. Before published, the observations have been quality-controlled by the maintainer.
The forecast data is based on the second-generation global ensemble reforecast dataset and consists of range of different meteorological quantities for day one (forecast horizon +6 to +30 hours ahead). The forecasts have been bi-linearly interpolated to the station location.
Hamill T M, Bates G T, Whitaker J S, Murray D R, Fiorino M, Galarneau Jr. T J, Zhu Y, Lapenta W (2013). NOAA's Second-Generation Global Medium-Range Ensemble Reforecast Dataset. Bulletin of the American Meteorological Society, 94(10), 1553–1565. doi:10.1175/BAMS-D-12-00014.1
BMLFUW (2016). Bundesministerium f\"ur Land und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW), Abteilung IV/4 – Wasserhaushalt. Available at http://ehyd.gv.at. Accessed: 2016–02–29.
data("RainTyrol", package = "RainTyrol") head(RainTyrol) colnames(RainTyrol)
data("RainTyrol", package = "RainTyrol") head(RainTyrol) colnames(RainTyrol)
All 95 observations stations including all necessary information about each station.
data("StationsTyrol")
data("StationsTyrol")
A data.frame
containing 95 observation stations and 5 variables.
character. Stationname.
numeric. Stationnumber
numeric. Longitutde.
numeric. Latitude.
numeric. Altitude.
Bundesministerium fuer Land und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW), Abteilung IV/4 - Wasserhaushalt (2016). Available at http://ehyd.gv.at, Accessed: February 29 2016
data("StationsTyrol", package = "RainTyrol") head(StationsTyrol)
data("StationsTyrol", package = "RainTyrol") head(StationsTyrol)